用24 kW的Trudisk激光器进行了实验,具有1030 nm波长和双核纤维,以及适用于24 kW的扫描仪光纤(此光学的特朗普名称为PFO 33(KF023)(KF023),[Pricking et al(2022)])。BrightlineWeld技术允许在100 µm内芯和400 µm外芯之间自由拆分功率,从而稳定钥匙孔并最大程度地减少溅射形成[Speker等人(2018)]。在此提出的实验中,使用了70%的核心与环比率,从而产生平滑的焊缝。放大倍率为3.2,内芯的焦点直径为320 µm,而外芯的焦点直径为1285 µm,相对于内芯,雷莱基长度为6 mm。使用此设置,工作场也很大,工作距离也很大,最大程度地减少了溅射对保护玻璃的影响,并且内核的斑点大小是焊接的典型特征。
不连贯的激光脉冲的自我形成似乎是自相矛盾的,既涉及强大的不稳定性和时间定位过程。不一致的脉冲状态在超快激光动力学中均经常出现。在本文中,我们通过实时录制不同的腔体分散液体下的不一致的脉冲动力学来带来决定性的实验数据。我们的测量值强调了发挥作用的不同主导机制。虽然孤子脉冲塑形有助于在异常分散体中创建一堆混乱的脉冲,而正常分散体状态下的不一致的脉冲遵循强烈的湍流耗散动力学。数值模拟在定性上很好地重现了观察到的动力学的最终堆积阶段。通过显示共同的动力学特征和差异,这些结果支持了不一致的耗散孤子的一般概念的发展。
二氧化硅的衰减非常低的衰减促进了基于纤维的数据通信的普遍性。今天被认为是玻璃的内在特性,但这仅仅是因为外部损失来源(因此是热量)已被去除。过渡金属杂质,特别是Cu和Fe,在1970年代建立的通信波长中扮演着最重要的作用[5,6]。要消除这些外部吸收剂,以玻璃(例如SICL 4)和杂质(例如Fe 2 Cl 6)前体之间的蒸气压差形式的热力学,并立即使用。对这种重要性的良好回顾,但在当前的光纤社区中被遗忘了。[7]。通过涉及氯的明智干燥方案,在长途纤维中还减轻了玻璃中OH物种引起的衰减。现代二氧化硅纤维基本上没有外部损失来源,因此产生热量,这完全是由于化学蒸气沉积(CVD)过程的材料科学。但是,如第2.1.2和2.2节所述,CVD对本质上低损耗纤维的祝福在纤维核的组成可卸载性方面会导致诅咒[8]。
摘要。集成的光子学引起了广泛的关注,并且在经典和量子光学器件中发现了许多应用,从而满足了现代光学实验和大数据通信中不断增长的复杂性的要求。femtsecond(FS)激光直接写入(FLDW)是一种公认的技术,用于在透明玻璃中生产波导(WGS),这些技术已用于构造复杂的集成光子设备。fldw具有独特的特征,例如三维制造几何形状,快速原型和单步制造,这对于集成通信设备以及量子光子和天体技术技术很重要。为了充分利用FLDW,已经做出了相当大的努力,以在较大的深度上产生WG,而传播损失较低,耦合损失,弯曲损失和高度对象模式场。我们总结了具有可控的横截面形态,高度对称模式领域,低损失以及高处理统一性和效率的可控形态的高性能WGS的机制,并讨论WGS在光学集成设备中的WG最近进展,以进行通信,拓扑,量化物理学,量子,量子信息,量词,天文学处理和天文学。还指出了该领域的未来挑战和未来的研究指示。
,由于符合微型生产和降低成本的新创新生产技术,激光微加工在电子产品领域正在动态增长。一个例子是在印刷电路板(PCB)制造过程中使用激光器。对于刚性和Flex电路,该行业预测引入关键维度,这些临界维度无法以当前技术的可接受成本实现[1]。该行业一直在寻找紧凑,轻巧且具有成本效益的创新激光来源,以生产先进的电子产品。使用激光技术的主要驱动力是微型化的不断进步 - 激光器提供了一种高度准确,精确和非接触式的替代方案[2,3]。当前,激光用于各种PCB生产过程,包括钻孔,板块,分析(切割),抗焊接面具的曝光过程 - 激光直接成像(LDI),修复,修剪,标记,标记和滑雪过程[4]。
由于振动和旋转跃迁,一氧化碳和甲烷等许多分子在中红外范围内都有强的吸收线。1 自 1994 年发明以来,中红外量子级联激光器 (QCL) 已成为分子气体传感的流行选择。2 分子光谱的精度和分辨率高度依赖于 QCL 的光谱线宽。3 由于接近于零的线宽展宽因子 (LBF),4 QCL 本身的固有线宽只有几百赫兹,接近肖洛-汤斯极限。5 然而,电流源噪声、温度波动和机械振动引起的闪烁噪声(1/f 噪声)会显著加宽自由运行 QCL 的实际线宽至兆赫兹范围。6 为了将 QCL 的光谱线宽缩小到千赫兹或赫兹范围,已经开发出各种各样的频率稳定技术。一种主要方法是将 QCL 频率锁定在分子吸收线的一侧,但代价是波长可调性的损失。7、8 另一种方法是通过庞德-德雷弗-霍尔方法将 QCL 锁定在高精度光学腔体上,这种方法容易受到外部声学和机械振动的影响。9 – 11 一种更常见的方法是将 QCL 相位锁定在近红外光学腔体上。
限制光以使放大更加有效。然而,想象一下没有使用镜子的传统反馈机制的激光器。这里出现了“无镜激光”的概念,2,3这是 Letokhov 最初提出的。通常,散射会导致腔体损耗,并被视为应避免的有害因素。然而,最新发现证实了强散射在产生类似激光现象方面具有惊人的好处。想象一个具有众多散射中心的增益介质。当光穿过这样的介质时,光子在离开系统之前会遇到多次散射,从而增加光子在介质中的停留时间。这反过来又提高了光的放大效率。因此,散射不会在介质中使用额外的反射器,而是会捕获光。术语“随机介质”定义了这种无序介质。随机激光的基本原理如图 1 所示。“随机激光”这一术语最初于 1994 年发表并引入。4,5 随机激光 (RL) 的产生仅取决于增益介质
摘要。利用飞秒光纤激光器在环境空气中实现了微孔钻孔和切割。首先,研究了透明(玻璃)和不透明(金属和组织)材料中的微孔钻孔。利用光学和扫描电子显微镜对孔的形状和形貌进行了表征和评估。演示了长宽比为 8 ∶ 1 的无碎片、圆度好且无热损伤的微孔。还演示了在硬组织和软组织中无裂纹或附带热损伤的微孔钻孔。然后,研究了不同材料的沟槽微加工和切割,并研究了激光参数对沟槽性能的影响。获得了笔直、干净的沟槽边缘,没有热损伤。© 作者。由 SPIE 根据知识共享署名 3.0 未移植许可证发布。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。 [DOI:10.1117/1.OE .53.5.051513]
报道了一种高度稳定的垂直外腔二极管泵浦无循环液体染料激光器。该设计简单(无需制造工艺步骤,无流体回路)、紧凑(~ cm 大小)且经济高效。报道的光学效率为 18%,M² 为 1,具有出色的光稳定性——在 50 Hz 下 140 万次脉冲后效率没有下降,该值与流动系统相当,远高于有机固态激光器可实现的值。我们表明热效应是该激光器稳定性和动力学的核心。详细研究了不同泵浦脉冲持续时间/重复率的激光建立和关闭动力学;它们表明,随着泵浦脉冲持续时间和重复率的增加,脉冲缩短,这被证明是由于热透镜衍射损耗造成的。这种激光结构为测试或收获可溶液处理的增益材料提供了一个非常方便和简单的平台。
晶体材料、石榴石或掺杂稀土的顺磁玻璃,因此不适合大面积和体积成像。[4] 氮空位 (NV) 中心对磁场具有高灵敏度(单个 NV 中心的灵敏度约为 1 nT Hz −1/2 量级),[5] 但 NV 的光学截面较弱,需要高分辨率检测其发射波长,并且校准困难。[6] 磁成像应用将受益于生物相容性材料(如分子或纳米颗粒)内更强的光磁相互作用,这些材料可以直接掺入样品或生物测定中。[7] 理想情况下,用于磁成像的纳米材料还能够进行高分辨率成像和在高光子通量下操作,甚至可能在微激光器中实现,其明亮的发射和高光谱灵敏度为以细胞分辨率监测各种生理参数创造了新的机会。 [8] 荧光或电致发光材料中的新光磁效应可用于调制激光,甚至可能在光调制器中找到新的应用,而光调制器目前依赖于弱热效应或电光效应。鸟类对地球磁场敏感性的解释为传统磁光材料提供了一种替代品。最近的研究表明,鸟类能够利用其视网膜中电子相互作用的磁敏感性来适应地球磁场。[9,10] 鸟类视网膜中蛋白质的光激发会产生自由基(不成对电子)中间态,然后这些中间态与自旋为 1 的激子(电子-空穴对)相互作用,后者也称为三重态激子。为了解这些相互作用的磁依赖性基础,考虑一个不对称分子,对于该分子,即使在没有磁场的情况下,自旋为 1 的激子的三个三重态也会在能量上分裂。通常,在没有显著的自旋轨道耦合的情况下,这种零场分裂小于约 10 μ eV。[11] 因此,一个数量级为 10 μ eV μ B − 1 ( ≈ 0.2 T) 的外部磁场(其中 μ B 是玻尔磁子)可以通过塞曼效应重新排序三重态,从而调节它们在自旋相关相互作用中的参与。对于没有零场分裂的未配对电子,磁场灵敏度通常更高。因此,三重态-三重态和三重态-电荷相互作用都可以经历磁场调制。鉴于其