在高功率激光材料加工技术中,例如激光焊接、激光熔覆或激光表面处理,调整激光束的空间强度分布(俗称光束整形)可用于优化加工结果,包括加工质量和/或生产率。为了实现动态光束整形(即在加工过程中调整强度分布),光学装置中需要动态光学元件。目前,适合整形单个高功率激光束的动态光学装置是振镜扫描仪和可变形镜。然而,缺乏对这些光束整形装置的光束整形能力(例如分辨率和整形性能)的客观比较。本文提出了一种新颖的数学框架来分析和比较这两种光束整形概念。该框架用于量化光束整形能力,作为相关激光设置参数的函数。接下来,使用该数学框架,模拟振镜扫描仪和可变形镜在瞄准分裂激光束、创建马蹄形强度分布和创建方形均匀分布时的性能。结果表明,实际上,这两种设备都能够在焦平面上创建这三种所需的激光强度分布,与所需的光束形状相比,平均误差也较小。然而,误差分布显示出差异,这是每个单独的光束整形设备的物理限制所特有的。
摘要 光的作用远不止让我们看得见。它是人类生活的重要组成部分,对我们有着重大的生理、心理和社会影响。从远古时代我们的祖先崇拜太阳到我们现在对人工照明的依赖,光以多种方式影响着我们的生活。它帮助我们探索和理解世界,控制我们的睡眠-觉醒周期,并影响我们的情绪。本介绍将探讨光的诸多好处,以及它在我们作为一个物种的总体进化以及我们的健康和福祉中的关键作用。同时,光是一种深远的能量来源,其应用范围从日常照明到医疗、工业和国防领域的高科技用途。利用光的最有效方式之一是通过激光技术,它将光聚焦在强烈的相干光束上。本文探讨了激光作为一种光驱动的能源如何彻底改变医疗保健(例如 LASIK 和外科手术应用)、工业制造和军事行动等领域。
牙科激光器CO 2激光的类型和应用一直是牙科自1970年代引入以来的重要工具,主要用于软组织应用。它是一种用于其机制的气体混合物(主要是二氧化碳)。CO 2激光在10,600 nm的波长下排放[1]。这些主要用于软组织手术,这是由于其高吸收吸收而导致有效的切割和凝结,对周围组织的损害最小。由于其在水和羟基含量中的吸收高吸收而对软组织都有效。在正确使用时提供了精确的切割和蒸发,并对周围的组织进行最小的热损害[2]。这些激光器不仅可以用于手术,包括牙龈切除术,肾切除术和口服病变的治疗,例如白细胞,erythroplakia和地衣
在过去的几十年中,激光技术已经取得了显着发展,在包括制造,国防,电信和医学在内的各种行业中变得至关重要。本章对当前的激光技术进步进行了彻底的分析,强调了重大发现及其对不同部门的影响。本章讨论了激光技术的新发展,例如集成光子学,量子技术以及对环保激光材料和生产技术的要求。激光技术的未来将在很大程度上通过这些领域的研究和开发工作来塑造。本章详细介绍了激光技术的最新发展,展示了其对一系列行业的革命性影响。激光技术的快速发展一直在创造新的基础,以前呈现出创造力的闻所未闻的机会,并解决了全球问题。
对宽带材料(例如眼镜和晶体)的精确和高质量加工的需求在科学和工业中具有相当大的意义。在这些材料中,蓝宝石由于其出色的机械和光学特性,高导热率和稳定性,低电导率以及针对苛刻的化学物质的弹性而脱颖而出。尽管蓝宝石的硬度很硬,但蓝宝石还是脆弱的,使其容易在传统的加工尝试中进行破解。最近,诸如激光消融之类的替代非接触方法已成为提高加工质量的潜在解决方案。然而,对宽带材料的激光处理的研究,尤其是利用飞秒固态激光系统的高谐波,仍然是不完整的。我们的研究重点是研究使用飞秒(300 fs)深紫外线(206 nm)激光脉冲的C-CUT蓝宝石晶体的非热激光消融,并将结果与传统的IR IR femtsosecond消融进行了比较。出版物涵盖了对消融过程的全面描述,以及与随附的扫描电子显微镜图像一起对各种已达到的形态进行了回顾。我们的发现表明,可以通过特定激光处理参数范围内的单步过程来实现表面粗糙度低于100 nm的有效消融。蓝宝石的消融过程涵盖了强烈的孵化效果,因此脉冲需要紧密地重叠。此外,我们还提供了用于提取表面粗糙度的方法的详细描述,该方法在所有提出的研究中都用于表面粗糙度,并提供了一个实用的框架来表征从不同激光系统获得的消融结果。
激光引起的周期性表面结构(LIPS),尤其是表现出高空间频率LIPS(HSFL)的表面结构,由于其快速纳米结构的产生能力,因此在精确制造中具有至高无上的意义。但是,对于Au,在微纳米应用中广泛使用的材料,HSFL的表现仍然难以捉摸。这项研究成功地制造了HSFL,其周期性为100 nm,利用了520 nm飞秒激光(FS-LASER)引起的结晶。启动HSFL形成的基本元素在于用无序的晶格结构与FS激光诱导的结晶相结合。无序的晶格结构促进了电子在热传输中偶联的占优势,从而抑制了热电子扩散效果 - 这是HSFL形成的先决条件。结晶控制了“非晶Au”的转换为典型的Au的结晶状态,同时还可以使周期乘法取决于FS-LASER脉冲的数量。它最终促进了在晶体AU上形成100 nm HSFL的形成。此外,通过在单层石墨烯中的周期性纳米图案(即HSFL)中的应用中,Au HSFL的多功能性得到了证明。因此,除了揭示了基于金属HSFL形成的新型物理机制外,Au HSFL的成就无疑有望在纳米电子和纳米光子学方面取得重大进步。
免责声明:本报告是作为美国政府机构赞助的工作的记录而编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文中以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文中表达的文档作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
19.06. -21.06.2024 Sciif-中国国际工业博览会 - 工业自动化和机器人赛,Laserfair,数字工厂,视觉,MWCS,METWCS-金属加工和CNC工具SHONZHEN SHIE SHENZHEN SHONZHEN,中国,Volksrepublik
(i)教学助理(ta)(ii)(non-ta);众所周知的R和D组织的赞助候选人(SW),例如DRDO,ISRO,BHEL,C-DAC,ADE,ADA等。和高知名的行业; (iii)国防军(DF):国防军赞助的候选人; (iv)仅兼职IIT Indore的常规研究所员工。合格考试:印度学生:ECE,EE,IN,ME,PH,PI,AE&MT中的有效门。非TA,SW,DF的候选人和IS类别不会提供任何奖学金。计划的持续时间:全日制2年。选择标准:门评分和 /或面试。(非TA类别的有效门评分强制性)总进气:15 TA + NON-TA类别 + SW + DF + IS 1年级,学期-I课程代码课程标题联系时间