抽象的宪法复杂染色体重排(CCR)是通过未知机制在种系中产生的罕见细胞遗传畸变。在这里,我们使用全面的基因组和表观基因组分析分析了微观三向或更复杂的易位的断点连接。所有这些易位连接均显示出伪造的基因组复杂性。这些断点聚集在小基因组域中,该结构域显示了微学或微插入。值得注意的是,所有从头案件都是父亲的起源。突破点分布特别对应于ATAC-SEQ(带测序的转座酶可访问染色质的测定)读取成熟精子的数据峰,而不是其他染色质标记或组织。我们提出,在脂肪生成后的精子发生过程中,CCR中的DNA断裂可能会在可接收的密集染色质区域中发展。
抽象实现具有窄带发射和高颜色纯度的高发光有机发光设备(OLEDS)在各种光电领域都很重要。激光显示由于其最终的视觉体验而在下一代展示技术中表现出了出色的优势,但这仍然是一个巨大的挑战。在这里,我们开发了一种新型的基于OLED的有机单晶。通过将有机激子状态与光学微腔内强烈耦合,我们从极性的OLED(OPLEDS)中获得了Polariton电致工(EL)发射,具有较高的亮度,窄带发射,高色纯度,高极性,高极性以及出色的光学泵送极性元素Laser。此外,我们通过理论分析评估了电泵浦极性激光的潜力,并提供了可能的解决方案。这项工作提供了一种强大的策略,具有材料 - 设备组合,为电动有机单晶的极性发光设备和可能的激光器铺平了道路。
阿尔卑斯山2024年:第13个高级激光器和光子来源BFSS 2024:可持续社会的商业和金融2024年 - 涉及光子行业的扩张 - bisc 2024:第10届生物医学成像和传感会议HEDS HEDS HEDS HEDS 2024:2024 Nano-Optoelectronics 2024 IP 2024:信息光子学2024 LDC 2024:激光显示与照明会议2024 LEDIA 2024:第10届国际发光设备国际会议及其工业应用LSC LSC LSC 2024:2024:激光和同步辐射实验2024 LSSE CYTERIMENT 2024 LSSE 2024:LASER COMPLIENT 2024:LASER COMPLIENT 20224: : The 11th Optical Manipulation and Structured Materials Conference OPTM 2024 : Optical Technology and Measurement for Industrial Applications 2024 OWPT 2024 : The 6th Optical Wireless and Fiber Power Transmission Conference SLPC 2024 : The 5th Smart Laser Processing Conference TILA-LIC 2024 : Tiny Integrated Laser and Laser Ignition Conference 2024 XOPT 2024 : International Conference on X-ray Optics and Applications 2024
摘要。使用扫描隧道显微镜(STM)模板的氢终止硅的掺杂剂前体分子的附着,已用于将电子设备与次纳米计精度进行重新处理,通常用于量子物理学实验。这个过程,我们称之为原子精度高级制造(APAM),在固体溶解度极限之外掺入硅,并产生电气和光学特性,这些特性也可能对微电子和等离子化的应用有用。但是,扫描的探针光刻缺少开发更复杂的应用所需的吞吐量。在这里,我们演示并表征了APAM设备工作流程,在该工作流程中,原子层的扫描探针光刻已被光刻所取代。紫外线激光显示出在纳秒时间尺度上氢化所需的温度高于温度的局部和控制的硅,这是一种抗性不足和过度暴露的过程。stm图像表明狭窄的能量密度范围,其中表面既受嘲笑又未受损。对光热加热和随后的氢脱附动力学进行建模表明,在我们的模式过程中达到的sil iCON表面温度超过了温度填充实验中氢去除氢所需的表面温度。与STM相比,发现通过依次的光灭绝区域进行磷的范德Pauw结构,然后将其暴露于磷酸的区域,然后将其暴露于磷酸。©作者。[doi:10.1117/1.jmm.20.1.014901]最后,还证明了可以同时执行的光含量和前体暴露步骤,这是使APAM在超高真空外启用APAM的潜在途径。由SPIE发表在创意共享归因4.0未体育许可下。全部或部分分配或复制此工作需要完全归因于原始出版物,包括其DOI。
摘要。使用扫描隧道显微镜(STM)模板的氢终止硅的掺杂剂前体分子的附着,已用于将电子设备覆盖具有次纳米计精度的电子设备,通常用于量子物理学实验。这个过程,我们称之为原子精度高级制造(APAM),在固体溶解度极限之外掺入硅,并产生电气和光学特性,这些特性也可能对微电子和等离子化的应用也有用。但是,扫描的探针光刻缺少开发更复杂的应用所需的吞吐量。在这里,我们演示并表征了APAM设备工作流程,在该工作流程中,原子层的扫描探针光刻已被光刻所取代。紫外线激光显示出在纳秒时间尺度上氢化所需的温度高于温度的局部和控制的硅,这是一种抗性不足和过度暴露的过程。stm图像表明狭窄的能量密度范围,其中表面既受嘲笑又未受损。对光热加热和随后的氢脱附动力学进行建模表明,在我们的模式过程中达到的sil iCON表面温度超过了温度填充实验中氢去除氢所需的表面温度。与STM相比,发现通过依次的光灭绝区域进行磷的范德Pauw结构,然后将其暴露于磷酸的区域,然后将其暴露于磷酸。©作者。[doi:10.1117/1.jmm.20.1.014901]最后,还证明了可以同时执行的光含量和前体暴露步骤,这是使APAM在超高真空外启用APAM的潜在途径。由SPIE发表在创意共享归因4.0未体育许可下。全部或部分分配或复制此工作需要完全归因于原始出版物,包括其DOI。