抽象的激光覆层是一项公认的技术,大多数先前的数值建模工作都集中在基于粉末过程的过程中的交付和融化池行为。这项研究对优化的激光束成型进行了新的研究,以针对电线基的独特特性,其中直接底物加热以及电线和底物之间的热传递非常重要。与基于粉末的材料交付相比,该主题的值是通过基于电线的沉积过程来改善的沉积速率和致密的金属结构。线内温度分布(AISI 316不锈钢),底物的传热和直接加热(低碳钢)是通过传热模拟建模的,具有三个激光束辐照度分布。此分析确定了通常与标准高斯分布相关的局部高温区域的去除,以及均匀方形梁曲线可以提供的改进的底物加热。使用横截面光学显微镜分析了使用预位线和1.2 kW CO 2激光器的实验,以提供模型验证和改进的电线覆盖层润湿的证据,同时维持甲壳材料中有良好的抗甲基甲虫。这项工作的关键发现是从480 W/mm 2减少,在从高斯分布更改为均匀的平方分布时,需要辐照辐射,以进行有效的熔融池形成。这也可减少总能量50%。认可和讨论了能源效率,降低成本和可持续性改善的潜在提高。
摘要。1)背景:高功率连续激光束在光缆(包括光纤)列车和大气中的建模、特性、变换和传播在过去几年中已成为激光科学与工程领域的热门话题。在军事领域中,高功率连续激光应用必须具有单模输出。此外,非平稳、动态的工作模式也很常见。由于动态行为和非典型非高斯分布,公认的激光束诊断设备和程序无法直接应用。2)方法:提出了 Wigner 变换方法来表征具有显著确定性像差的动态变化高功率连续激光束。采用 Shack-Hartmann 方法进行波前传感测量并分解为正交 Zernike 基。3)结果:发现了由非平稳热光效应导致的确定性像差,该像差取决于激光输出的平均功率。通过维格纳方法测定的光束质量的变化与远场光束直径的测量结果的变化相同。4)结论:这种像差成分似乎是导致高功率连续激光束的光束质量和亮度下降的主要因素。
1 加拉茨大学工程学院机械工程系,Domneasc ă 47, 800008 Galati,罗马尼亚 2 先进车辆系统中心(CAVS),密西西比州立大学,斯塔克维尔,MS 39762,美国;bagheri.274@gmail.com 3 微机电系统中心(CMEMS-UMinho),Campus de Azur é m,米尼奥大学,4800-058 Guimarães,葡萄牙;brunohenriques@dem.uminho.pt 4 陶瓷和复合材料实验室(CERMAT),Campus Trindade,圣卡塔琳娜联邦大学(UFSC),Florian ó polis 88040-900,SC,巴西 5 德累斯顿工业大学制造技术研究所,01062 Dresden,德国; andres_fabian.lasagni@tu-dresden.de 6 弗劳恩霍夫制造研究所和 Strahltechnik IWS,Winterbergstr。 28, 01277 Dresden, 德国 7 奥本大学机械工程系, Auburn, AL 36849, USA; shamsaei@auburn.edu 8 国家增材制造卓越中心 (NCAME),奥本大学,奥本,AL 36849,美国 *通讯作者:mihaela.buciumeanu@ugal.ro (MB); fsamuel@dem.uminho.pt (FSS)
如今,掺杂稀土离子的石英光纤激光器,尤其是 Y b 3+ 光纤激光器,其平均功率已达到数千瓦量级,许多技术应用已开始显现可行性。例如:医疗手术、岩石钻探、远程云感测、射电天文学、太空无线电通信、卫星通信、无线电传输、远程激光通信以及用于远程充电电池的激光器。因此,其中一些应用需要研究与激光束大气传播相关的现象 [1]、[2]、[3] 和 [4]。最近,一些研究开始对速度场作为动态变量的数值解进行建模 [5],这与先前研究规定流体速度 [6]、[7] 不同。当激光束传播通过吸收介质时,会发生称为热晕的效应。尽管介质的吸收效应非常小,但当流体为空气时,会促进激光束附近的温度和密度场的变化。温度变化会引起折射率的变化,从而
人眼在短时间内暴露于辐射中 0.25 秒内不会受到伤害。长时间暴露于激光束可能会损害视网膜。激光辐射对人体皮肤无害。▸ 切勿直视激光束。▸ 切勿将激光束对准人眼。▸ 在调试或维护工作期间,必须佩戴合适的护目镜。▸ 避免反射面引起的激光束反射。特别是在
显示出最高的拉伸应力,超过 800 MPa。Bodner 等人在 [33] 中报告了 Inconel 625 和 AISI 316L 的层内多材料结构中残余应力水平同样升高的情况。此外,图的上部区域显示拉伸应力从马氏体时效的左边缘开始,延伸到整个梯度区域,并在朝向 AISI 316L 区域的大约一半处减小,在试样的右边缘处发现应力减小到无应力区域。减小的
我们的团队一直在研究干涉仪的超速跨原子原子源。由于锶是室温下的固体,因此必须将其加热到450°C左右才能产生气态蒸气。然后将激光器中的原子分为两个阶段,然后首先使用蓝光,然后使用红色。在此过程中,向激光束传播的原子可以吸收一些激光光,从而使原子朝着激光束的方向上有很小的踢。做了数千次,网络效应是原子的放缓,因为它被激光束向后推。这种放慢的速度等同于使原子更冷。使用多个激光束进行此操作,这些原子有效地固定在各个方向上,并且通过添加磁场,可以将磁场捕获在梁相交的地方。
在过去的几年中,增材制造已成为一个主要的研究课题和工业生产的一部分。现在,许多技术允许使用多种材料构建 3D 结构。在金属加工中,激光束通常用作热源来熔化金属丝或粉末。飞溅物和粉末颗粒的轨迹可能会受到激光束辐射的影响。激光束光被材料部分吸收,然后转化为热量,这会导致熔化甚至汽化。材料的汽化会在熔池上产生反冲压力,从而影响其几何形状和动力学。然而,反冲压力对液滴和粉末颗粒等悬浮物体的影响仍然相对未知。它们与熔池相比不同的尺寸和边界条件可能会影响它们在高激光束辐射下的行为。
[Dominik,Johanna等。“用于100 MJ类的薄磁盘多通放大器,多kW高强度激光器。”高强度激光器和高场现象。Optica Publishing Group,2022]