通过分析已经通过血浆的激光束的横向强度分布来描述高能密度等离子体的特性。使用射线传递矩阵分析,可以通过光束偏转角度直接校准折光仪的输出。本文描述了一种新颖的方法,该方法是根据激光束的横向强度分布的空间波数校准折光仪输出的方法。这是通过用栅格结构代替等离子体来调节梁的横向强度,从而产生以已知傅立叶变换的强度分布来实现的。这种校准技术将生成偏转角度的一对一映射到波数,并可以测量系统可用的傅立叶空间的尺寸。激光束穿过高能密度等离子体时产生的波数谱可能包含有关等离子体中存在的密度波动类型的信息。
它们各有利弊:- 扭转超声波焊接的焊接工具使用寿命较短。如果 JR 高度增加,焊接工具(喇叭/超声波发生器)的设计将变得更加复杂,以保持高可靠性:薄型设计刚度较差,导致焊接效率低下。- 由于焊接元件为纯铝合金,点电阻焊接可能会出现粘连问题。- 激光焊接:很难将激光束聚焦到 JR 内径。一些电池制造商正在研究不同的设计,允许从底部焊接(激光束从底部的外侧击中阴极端子)
亮点 - ASTROlas 特点和设计参数:• 抗辐射以及紧凑坚固的机械设计• 用于数据处理的单个 FPGA• 针对激光检测优化的广角镜头(>100° FoV)• 四个光谱通道,范围为 0.4...1.7µm:- 用于激光点成像的专用镜头- 每个通道的带宽和中心波长均可调整• 激光脉冲检测能力,区分脉冲和恒定激光束• 激光功率密度测定(辐射测量)• 2D 图像和检测到的激光束的叠加
摘要。增材制造 (AM) 是一种先进的方法,可逐层制造复杂零件,直至达到所需的设计。激光粉末床熔合 (L-PBF) 用于生产高分辨率的零件,因为层厚度低。L-PBF 基于激光束和材料的相互作用,其中粉末材料被熔化然后凝固。这发生在 0.02 秒的短时间内,使得整个过程难以实时研究。研究表明,数值方法的发展和模拟软件的使用可以理解激光束和材料的相互作用。这种现象是理解材料在熔化状态下的行为以及 L-PBF 工艺生产的零件的机械性能的关键,因为它与熔化的粉末材料的凝固直接相关。需要在微观和中观尺度上详细研究激光束和材料的相互作用,因为它可以提供更好的理解并有助于开发用于 L-PBF 工艺的给定材料。本综述全面了解了 AM 中使用模拟的背景以及感兴趣的特征的不同模拟尺度。
对国内外激光安全体系进行了研究,以找出存在的问题并选择解决办法。提出了一种对以激光辐射作用为特征的劳动条件进行特殊评估的通用方法,该方法基于对工作场所危害严重程度因子最大值的测量和计算结果。已经开发出评估激光束危险程度的计算方法,其中考虑到辐射与眼睛光学系统的特殊相互作用;基于新的卫生标准估计激光束致盲程度的方法;还开发了仪器安全控制工具(激光剂量计)的电路解决方案,以及统一的工作场所剂量控制方法(具有高可靠性和测量重现性)。