在本研究中,使用了能够选择性地与被荧光染色的单链目标DNA(荧光DNA)结合的单链DNA修饰的2种大小和材质不同的探针粒子(金纳米粒子,Probe1;聚苯乙烯微粒,Probe2),尝试通过用激光照射含有这些粒子的溶液,利用光的力量(光诱导力)以及由该力引起的光诱导对流,使目标DNA和探针粒子局部集中,从而加速DNA双链的形成。结果发现,经过5分钟的光照,探针1和2的凝集物形成约数十μm大小,荧光DNA被聚集并捕获在凝集物的间隙中。还发现,与探针颗粒表面的DNA牢固结合的互补碱基序列(匹配DNA)越强,发出的荧光信号就越强(图2左)。特别地,本研究中使用的微粒经历了“米氏散射”,即当微粒的尺寸与激光波长相当时,光会发生强烈散射的现象。这种增加的光功率可用于提高浓缩效率。此外,由于光力增加时组装体变得更加稳定,因此人们认为可以实现迄今为止难以实现的固液界面光诱导双链形成的加速。通过利用该机制,我们实现了 7.37 fg/μL 的检测限,成功以比传统数字 PCR 方法(检测限:约 200 fg/μL)高一到两个数量级的灵敏度检测 DNA(图 2,右)。通常情况下,由于互补 DNA 分子之间碰撞的概率较低,在如此稀释的 DNA 溶液中形成双链需要很长时间。异探针光学浓缩法对 DNA 的检测之所以具有高灵敏度和快速性,被认为是由于通过显著增加聚集体内的局部 DNA 浓度,加速了这些极少量 DNA 双链的形成。此外,我们证明了通过用光照射金纳米粒子并利用产生的光的热量(光热效应)来松散双链键并增加键断裂的概率,来自聚集体的荧光信号表现出极高的碱基序列特异性,从而能够清楚地检测和识别24个碱基长的目标DNA中仅含有单个碱基的突变,包括位置依赖性(图3)。仅使用聚苯乙烯(Probe2)的情况,在所用激光的波长(1064nm)下几乎没有光热效应,因为与探针是同一类型,所以称为“同源探针”,否则称为异源探针。
线性到非线性飞秒激光脉冲在空气中聚焦的能量极限 Yu.E.Geints 1、DVMokrousova 2、DVPushkarev 2、GERizaev 2、LVSeleznev 2、I.Yu.Geints 1,3、AAIonin 2 和 AAZemlyanov 1、1 VE Zuev 俄罗斯科学院西伯利亚分院大气光学研究所,1,Zuev 院士广场,托木斯克 634055,俄罗斯 2 PN 俄罗斯科学院列别捷夫物理研究所,53 Leninskii pr.,莫斯科 119991,俄罗斯 3 莫斯科国立大学物理学院,列宁戈里,莫斯科 119991,俄罗斯 * 电子邮件:ygeints@iao.ru 摘要 紧密聚焦高功率超短激光的传播光学介质中的脉冲通常受介质光学非线性的显著影响,这会显著影响非线性焦点周围的激光脉冲参数,并导致不可避免且通常不受欢迎的焦腰空间扭曲。我们介绍了在不同空间聚焦下飞秒 Ti:蓝宝石激光器脉冲在空气中传播的实验研究和数值模拟结果。我们集中研究了不同聚焦方式下的光谱角和空间脉冲变换 - 从线性到非线性,当脉冲成丝时。据我们所知,我们首次发现了激光脉冲数值孔径范围 - 即从 NA = 2·10 -3 到 5 10 -3(对于 1 mJ 的激光脉冲能量),其中激光脉冲频率角谱和脉冲空间形状的畸变最小。通过数值模拟,我们发现了各种聚焦条件下的阈值脉冲能量和峰值功率,在此范围内,空气中的线性和强非线性激光脉冲聚焦之间会发生转变。结果表明,随着脉冲数值孔径的增大,该能量极限降低。我们的研究结果确定了足够的激光脉冲数值孔径和能量,以获得焦点附近具有良好光束质量的最大激光强度,适用于各种激光微图案化和微加工技术。1.引言光学介质的强非线性通常在高峰值功率激光脉冲在该介质中的传播中起着显著的作用,这导致脉冲时空自调制和其光谱成分的大规模变化,发生在脉冲高强度区域,即在伴随相对较高的自由电子密度的细长等离子体通道的激光束丝中。在空气和其他透明介质(如水、固体电介质等)中,这种丝状物的峰值强度可高达数百TW/cm2,而平均丝状物横向尺寸因传播介质、激光波长和聚焦条件的不同而从几个微米到数百微米不等[1]。在丝状化过程中,激光脉冲发生深度自相位调制,这导致其频率角谱显著丰富。这也导致了宽超连续谱翼[2]和高发散圆锥发射环[3]的形成。到目前为止,已经有大量研究致力于超短激光脉冲的成丝及其可能的应用(例如,参见评论[1,4,5])。在峰值功率P 0 超过自聚焦临界功率P c 的准直或聚焦激光脉冲传播过程中,成丝现象开始于所谓的非线性焦点。可以使用半经验马尔堡公式相当准确地估计到非线性焦点的距离z sf
US 11,016,119 B1 1 2 MONOLITHIC ATOMIC FORCE In view of the above problems , we proposed a novel class MICROSCOPY ACTIVE OPTICAL PROBE of probes for atomic force microscopy ( AFM active optical probe - AAOP ) by integrating a laser source and a photo CROSS REFERENCE TO RELATED detector monolithically into the AFM probe [ Actoprobe APPLICATIONS 5 2015 ] .AAOPS被设计为在召开AFM中使用,以通过包括本申请的索赔优先级和优先级来增强其功能,以上提到的仪器(NSOM,TERS,TERS,混合访问应用程序编号62 / 415,097于2016年10月31日提交,AFM)。 这些独特的光学探针的设计是根据整个披露,通过形式的传统AFM探针和参考。 10添加,同时提供有关纳米级样品的Opti cal特性的信息。 本发明概念的AAOP领域是基于单次结合二极管激光器和AFM探针的基础。 AAOP被设计为本发明与AFM显微镜和空腔探针有关的,即,AFM探针尖端是激光接近 - 场光学显微镜探针的一部分,尤其是15个腔。 AAOP由基于GAA的悬臂组成,其单片AFM活动光学探针能够执行安装在常规SI芯片上的AFM探针。 传统的AFM测量和光学成像,尽管在技术上可行,但纳米级的GAAS / SI杂交和光谱法。 硅,im和GAAS。 (DBR)镜子。62 / 415,097于2016年10月31日提交,AFM)。这些独特的光学探针的设计是根据整个披露,通过形式的传统AFM探针和参考。10添加,同时提供有关纳米级样品的Opti cal特性的信息。本发明概念的AAOP领域是基于单次结合二极管激光器和AFM探针的基础。AAOP被设计为本发明与AFM显微镜和空腔探针有关的,即,AFM探针尖端是激光接近 - 场光学显微镜探针的一部分,尤其是15个腔。AAOP由基于GAA的悬臂组成,其单片AFM活动光学探针能够执行安装在常规SI芯片上的AFM探针。传统的AFM测量和光学成像,尽管在技术上可行,但纳米级的GAAS / SI杂交和光谱法。硅,im和GAAS。(DBR)镜子。提出了严重的问题,可能会影响由于具有不同热膨胀常数的材料的粘结背景而产生的应变,即纳米级的光学表征当前需要NSOM(发明光学显微镜的接近 - 现场扫描摘要),TERS(TIP-增强的Raman Spectros副本)或Hybrid AFM(其中包括专门的FAR -FAR -FAR -FAR -FIEL -FIELD -FIELD 25本发明的对象都提供新型的光学显微镜)。class of probes for atomic force microscopy ( monolithic Attempts at integrating atomic force microscopy and AFM active optical probeML AAOP ) by integrating a optical techniques have already been made and several laser source and a photodetector monolithically into the products based on these schemes have found their way into AFM probe , based entirely on GaAs or similar lasing the market .可商购的,具有Inte-30材料的AFM尖端,从而避免使用有害的GAAS / SI杂化片状波导(空心尖端)。带有外部激光源[Celebrano 2009]。本发明构成了一种制造成本方法的方法,其固有的局限性就整体,集成的光学AFM探针而言。可以传递的最广泛的光学分辨率和光功率。用于原子力显微镜的使用的探针被制造得可实现高侧分辨率使用硅技术的接近磁场35的大小。此方法有限作为光学设备制造的基础。相比之下,ML AAOPS是孔需要减少的,因此导致完全由GAAS制造的指数,半导体材料的光电输出减少。具有最终分辨率和检测器功能的近距离显微镜的激光应用可以通过大约50 nm的外延生长来实现,但不适用于光学结构。边缘 - 发射激光二极管,轻度指南和EFFI光谱,由于功率输出较小。40个满足的光电探测器是通过对旨在更好地整合光区域(Epi-层)的活跃的其他方法来制造的,而AFM尖端是用源和AFM尖端制造的,通常涉及将特殊成长的GAAS外部外在过度层层附加到一个预先制动的光源(Edge Expriced semitter,vcse)的顶部(vcse vcse sepge a veriide a cert a py a veriide a cert a c。 AFM Cantilever探针(混合方法)[Bargiel Epi-激光结构的层。GAAS的选择是2006年,Kingsley 2008]或光源45的制造,直接在AFM尖端上直接在AFM尖端上建立的制造技术的基础[Heisig 2000a,Heisig,Heisig 2000b,nology,nology,允许时间和成本 - 有效的制造 - 有效的制造Hoshino Hoshino Hoshino 2008,Hoshino 2009,Hoshino 2009]。在这些情况下,探针的光学。本发明的实践很容易被探测到探针中。成本 - 有效地使它们负担得起,以实现本发明的说明性体现,即Tific社区。是在AFM尖端制造的激光波长[AN 2008]。杂种扩展到替代III -V半导体,例如INP,方法仅显示在研究实验室和GAP,GAP,GAS和GAN中起作用,以扩大可用的波长,很难想象如何将光学探针从UV到可见的和Mid -Midrared制造50个覆盖率。此外,在激光腔中常用的VCSEL由两种分布式bragg反射器定义,这种方法的光输出功率受到限制。第一个激光镜是标准的第一阶 - 另外,单个集成的光电视也具有dbr光栅(周期 / 2ng,其中h。< / div>光电探测器-55和NEF是仅GAAS波的有效折射率[AN 2008]不能解决指导的困难),该指标可确保将光源对齐在AFM尖端上的激光单个纵向模式,并进行要求。第二激光镜是降低检测器尺寸的第二个订单DBR,以实现位于悬臂末端的空间光栅(周期为n / neft)。IT分辨率直接与将用作用作折叠镜的要求矛盾,该镜子将光线(以获得高60 AVITY激光模式获得的最大可能的检测区域)垂直地进入Nansoscale上光学上的灵敏度水平的AFM尖端中。具有集成的LED光源和Pho-Ridge波导的AFM尖端顶部的特殊生长的GAA外延层层。尖端探头,光源(GAAS LED)被简单地粘在65本身上,是扮演悬臂芯片作用的总内反射棱镜。因此,激光产生的光已证明是todeTector [Sasaki 2000],但是虽然将耦合到GAAS探针的表面模式(锥形光电探测器(锥形光电探测器)中)并转移到尖端顶点。这不足以满足需求 - 输出镜,第三镜,在激光腔中。高功率,单波长操作的精神。GAAS微型 - 棱镜将激光光引导到尖端顶点和