夜间可视化需要使用孔径为 20 至 30 厘米的望远镜。由于直径为 20 厘米的空间碎片激光组件的出口孔径符合与孔径相关的规格,因此可以使用安装在空间碎片激光组件中的卫星摄像机进行夜间引导。对于具有比卫星摄像机的 FOV(视场)更大的角度偏移的目标的可视化,可以使用 Stare & Chase 望远镜。即使是夜间可以使用空间碎片激光系统测距的最小物体,也可以在两个摄像机中可视化。假设反射率为 20%,距离 600 公里的直径为 10 厘米的球形物体的亮度将为 11 mag。距离 1400 公里的直径为 50 厘米的球形物体将具有类似的亮度。对于最暗的物体,积分时间必须增加到几十分之一秒。
在电子工程的工业和研究领域,距离信息被视为关键测量之一 [1]。为了获得准确可靠的距离数据,具有测距能力的设备现在广泛应用于军事和工业领域,包括红外 (IR) 和超声波测距仪。然而,使用这些传统的测距系统会出现许多准确性问题,因为它们对周围环境非常敏感,特别是当暴露于非结构化和不可预测的物理环境(灰尘、温度、烟雾)或结构混乱的环境(瓦砾、碎片等)时 [2]。因此,提出了一种更可靠的测距方法。激光二极管发射高度定向的光束,具有体积小、亮度高、颜色纯、能量密度高和效率高的优点 [3][4]。最重要的是,激光测距系统不易受到环境影响,因为可以通过测量反射和散射回波信号的时间间隔、频率变化和光束方向来获得目标的距离和方向。使用激光测距方法的测量误差仅为其他光学测距仪的五分之一到百分之一 [5]。相位激光测距法因其高精度而受到广泛欢迎,然而其应用问题也不容忽视,观测到在频率漂移、噪声、大气折射等影响下,可能由于相位折叠或相位模糊而出现接近零步进误差[6]。Barreto 等人采用了三角测量激光测距法,但其灵敏度要求严格且功耗高[7]。本文研制了一种微型、便携、低功耗的激光测距系统,具有两种测量模式:高精度模式和长距离模式。本文研制了一种微型便携式激光测距系统,具有两种测量模式:高精度模式和长距离模式。该系统基于 VL53L0X 飞行时间激光测距传感器和 STM32F407 微控制器 [8]。
激光还有一种不太为人所知的应用是卫星激光测距。在本月的专栏中,来自马里兰州格林贝尔特 NASA 戈达德太空飞行中心 (GSFC) 陆地物理实验室 (LTP) 的 John Degnan 和 Erri cos Pavlis 向我们介绍了卫星激光测距,并描述了利用该技术追踪两颗 Navstar GPS 卫星的努力。Degnan 博士是 LTP 的空间大地测量和测高项目办公室负责人。他自 1964 年起就受雇于 GSFC,当时作为德雷塞尔大学的实习生,他参加了对 Beacon Explorer B 卫星的首次激光测距实验。Pavlis 博士是 LTP 的高级大地测量学家,隶属于马里兰大学天文系。他的研究兴趣包括卫星轨道动力学和空间大地测量数据分析。
§ D. Hampf,“SpaceWatchGL 观点:黑暗海洋中的一盏明灯:为什么所有太空物体都应该有反射器”,https://spacewatch.global/2022/07/spacewatchgl-opinion-a-beacon-of-light-in-the-sea-of-darkness-why-all- space-objects-should-have-retroreflectors/
摘要:GRACE 后续卫星携带了第一台星际激光测距干涉仪 (LRI)。在轨运行四年多后,LRI 的灵敏度超过了传统的微波仪器 (MWI)。然而,在当前的数据处理方案中,LRI 产品仍然需要 MWI 数据来确定未知的绝对激光频率,代表将原始相位测量转换为米级物理位移的“标尺”。在本文中,我们推导出精确执行从相位测量到距离的转换的公式,考虑到变化的载波频率。此外,还推导出了由于载波频率的知识不确定性以及未校正的时间偏差而导致的主要误差。在第二部分中,我们讨论了当前采用的交叉校准方案中 LRI 对 MWI 的依赖性,并提出了三种不同的 LRI 激光频率模型,其中两种模型在很大程度上独立于 MWI。此外,我们分析了热变化对尺度因子估计和 LRI-MWI 残差的贡献。推导出一种称为热耦合 (TC) 的线性模型,该模型显著降低了 LRI 和 MWI 之间的差异,使 MWI 观测限制了比较的水平。
3. 空间碎片激光测距 SDRL 升级是空间安全(主要 GMV)下正在进行的活动的一部分:“激光测距 - 向碎片观测主动传感器网络的演变”
该作品保存在航空热力学研究所的研究所图书馆中,供公众阅读,并且该作品被记录在研究所网站和大学图书馆的在线目录中。后者意味着作品的书目数据(标题、作者、出版年份等)在全球范围内永久可见。为此,在工作完成后,除了校样外,我还会向我的导师提交另一份印刷版和一份数字版。我将这些附加版本的所有权转让给斯图加特大学,并授予航空热力学研究所出于研究和教学目的对本作品以及我在本作品范围内产生的工作成果的免费、时间和空间不受限制的简单使用权。如果本院就该作品与第三方订立了使用权协议,则该协议同样适用于该作品范围内产生的工作成果。
除了这次任务之外,惠特克表示,其他几项创新也有可能改变机器人目前探索太阳系的方式。目前,探测器使用立体视觉来探测地形危险。惠特克表示,如果激光测距技术(称为 Lidar)可以小型化以适合机器人,那将是一个“突破”。
• 线性无偏最小方差估计技术的开发和应用• 处理轨道物体上的扰动力,例如阻力、辐射压力、非球面重力等。• 了解时间和参考系统对精确轨道测定的重要性• 回顾目前用于跟踪近地和深空环境中物体的各种跟踪方法,例如 GNSS、激光测距、光学、DSN 等。• 了解这些跟踪系统使用的各种物理测量,以及如何处理它们以生成航天器位置和速度估计• 使用模拟和真实数据集进行实践练习• 了解卫星轨道测定的广泛应用和用途,以及课程材料如何应用于地球和行星任务、空间领域感知等。
摘要 研究了低植被对机载激光扫描的影响。高植被可通过过滤去除,但低植被会导致数字地形模型出现系统性误差。许多研究人员报告称测量值过高。对激光测距影响的研究提高了对所用技术的理解,并解释了观察到的误差。研究了使用植被类型信息校正数据的可能性,并使用来自地面测量的地面真实数据作为参考。提出了一种使用纹理测量的替代方法,该方法不需要有关土地覆盖类型的信息。纹理之前已为数字图像定义,这里介绍了其在点云中的等效纹理。