NE 221 高级 MEMS 封装本课程旨在让学生为攻读 MEMS 和电子封装等更专业领域的高级课题做好准备,这些领域适用于各种实时应用,如航空航天、生物医学、汽车、商业、射频和微流体等。MEMS – 概述、小型化、MEMS 和微电子 -3 个级别的封装。关键问题,即接口、测试和评估。封装技术,如晶圆切割、键合和密封。设计方面和工艺流程、封装材料、自上而下的系统方法。不同类型的密封技术,如钎焊、电子束焊接和激光焊接。带湿度控制的真空封装。3D 封装示例。生物芯片/芯片实验室和微流体、各种射频封装、光学封装、航空航天应用封装。先进和特殊封装技术 - 单片、混合等、绝对压力、表压和差压测量的传感和特殊封装要求、温度测量、加速度计和陀螺仪封装技术、MEMS 封装中的环境保护和安全方面。可靠性分析和 FMECA。媒体兼容性案例研究、挑战/机遇/研究前沿。NE 235 微系统设计和技术 本入门课程涵盖 MEMS 换能器设计和系统开发的基本原理和分析。本课程以“NE222 MEMS:建模、设计和实施”中提供的背景知识为基础。本课程向学生介绍材料物理、弹性波和传播、换能器建模、MEMS 传感器和执行器设计以及 RF MEMS 组件分析。本课程还将开设基础实验课,演示超声波换能器、质量传感器、表面声波谐振器、惯性传感器等微系统。将介绍不同 MEMS 换能器的有限元建模、布局设计和设备测试方案。课程将使用测验、作业和项目进行评估。NE 310 光子技术:材料和设备
在凯文后的重新定义时代,温度可追溯性受到开尔文(MEP-K-19)定义的CCT批准的机制。开发新一代的基于光学的主要温度测量方法可以直接在原位中直接使用,这将满足当前需要重新校准传感器的需求。同时,量子技术的最新发展需要非常控制的原位温度计(直接集成到量子芯片集中),以直接在发生量子测量的地方进行测量。在Empir JRP 17FUN05摄影项目中,已经制造了最新的光学机械和光子谐振器,并且已经实施了可追溯的温度测量值,以准确对这些新温度传感器的计量验证。在较大的温度范围内证明了使用光学传感器的实用相噪声温度计:从4 K到300K。但是,在大于(高于300 K)温度范围内测量的测量时,需要一系列光学机械传感器来减少相应的不确定性。在低温温度(低于10 K)下,量子光学技术可以实现准确的初级温度计(不确定性<0.2 K)。量子相关温度法作为替代初级温度计技术集成在纳米级,并且对磁场不敏感。除了初级温度测定法外,高精度和分辨率还需要光子温度计。对于实际应用(低温温度),芯片通过光纤需要进行光学耦合。光子温度计是一种基于热光效应的芯片量表技术,即光波导的折射率的温度依赖性,它决定了光学谐振器的谐振频率的温度,从而导致非常高的温度分辨率(SUBMK)。最低工作温度是通过光学波导的热效应施加的,光学波导对于低于80 k的硅变得很小。光子温度计具有很高的灵敏度(硅硅的70 pm/k),但是它需要在此处开发的其他类型的温度计,因为它是一种非优质的热量计质,因为它是其他类型的热量表。可以通过将芯片固定在纤维本身上来实现,但是为了确保连接技术的可重复性和所使用材料的兼容性的可重复性,需要在较大的温度范围内测试该方法。为此,可以考虑基于胶水连接的标准耦合方法。但是,由于低温温度下胶的热应力,它们的使用受到限制。作为一种替代方案,已经提出了激光焊接方法将融合的二氧化硅纤维与集成微晶状体的硼硅酸盐纤维底物进行硼硅酸盐玻璃底物。需要开发应力补偿技术和新颖的光学设计,以促进广泛的温度范围光学平台。最后,光子
温度测量 1.0 简介 当今工业环境中的温度测量涵盖了各种各样的需求和应用。为了满足这些广泛的需求,过程控制行业开发了大量的传感器和设备来处理这一需求。在本实验中,您将有机会了解许多常见传感器的概念和用途,并实际使用这些设备进行实验。对于大多数机械工程师来说,温度是一个非常关键且广泛测量的变量。许多过程必须具有受监控或受控的温度。这可以是对发动机或负载设备的水温的简单监控,也可以是像激光焊接应用中的焊缝温度一样复杂的监控。可能需要监控更困难的测量,例如发电站或高炉烟囱气体的温度或火箭的废气温度。更常见的是工艺或工艺支持应用中的流体温度,或机器中固体物体(如金属板、轴承和轴)的温度。2.0 温度测量的历史 如今,使用的温度测量探头种类繁多,具体取决于您要测量的内容、需要测量的准确度、是否需要将其用于控制或仅用于人工监控,或者您是否甚至可以触摸要监控的内容。温度测量可分为几大类:a) 温度计 b) 探头 c) 非接触式温度计是该组中最古老的。测量和量化某物温度的需求始于公元 150 年左右,当时盖伦根据四个可观察的量确定了某人的“肤色”。直到 16 世纪科学发展起来,‘温度计’这一实际科学才开始发展。第一台实际温度计是《自然魔法》(1558 年、1589 年)中描述的空气温度计。这种装置是当前玻璃温度计的前身。到 1841 年为止,共有 18 种不同的温标在使用。仪器制造商 Daniel Gabriel Fahrenheit 从丹麦天文学家 Ole Romer 那里学会了校准温度计。1708 年至 1724 年间,Fahrenheit 开始使用 Romer 温标生产温度计,然后将其修改为我们今天所知的华氏温标。华氏通过将容器改为圆柱体并用水银代替早期设备中使用的酒精,极大地改进了温度计。这样做是因为它具有近乎线性的热膨胀率。他的校准技术是商业秘密,但众所周知,他使用了海盐、冰和水混合物的熔点和健康男性腋窝温度的某种混合物作为校准点。当
温度测量 1.0 简介 当今工业环境中的温度测量涵盖了各种各样的需求和应用。为了满足这些广泛的需求,过程控制行业开发了大量的传感器和设备来满足这一需求。在这个实验中,您将有机会了解许多常见传感器的概念和用途,并实际使用这些设备进行实验。 对于大多数机械工程师来说,温度是一个非常关键且广泛测量的变量。许多过程必须具有受监控或受控的温度。这可以是简单的发动机或负载设备水温监控,也可以是复杂的激光焊接应用中的焊缝温度监控。可能需要监控更困难的测量,例如发电站或高炉烟囱气体的温度或火箭的废气温度。更常见的是过程或过程支持应用中的流体温度,或机械中的金属板、轴承和轴等固体物体的温度。 2.0 温度测量的历史 如今,使用的温度测量探头种类繁多,具体取决于您要测量的内容、您需要的测量精度、您需要将其用于控制还是仅用于人工监控,或者您是否可以触摸您要监控的内容。 温度测量可分为几大类:a) 温度计 b) 探头 c) 非接触式温度计是该组中最古老的。 测量和量化某物温度的需求始于公元 150 年左右,当时盖伦根据四个可观察的量确定了某人的“肤色”。 直到 16 世纪科学发展之后,“温度计”的实际科学才发展起来 第一台真正的温度计是《自然魔法》(1558、1589)中描述的空气温度计。该装置是当前玻璃温度计的前身。到 1841 年为止,共有 18 种不同的温标在使用。仪器制造师丹尼尔·加布里埃尔·华伦海特从丹麦天文学家奥勒·罗默那里学会了校准温度计。1708 年至 1724 年间,华伦海特开始使用罗默温标制作温度计,然后将其修改为我们今天所知的华氏温标。华伦海特通过将储液器改为圆柱体,并用水银代替早期设备中使用的酒精,大大改进了温度计。这样做是因为它具有近乎线性的热膨胀率。他的校准技术是商业机密,但众所周知,他使用海盐、冰和水混合物的熔点和健康男性腋窝温度作为校准点。当
激光粉末床熔合 (L-PBF) 使 Glenn Research Copper 84 (GRCop-84) 能够通过增材制造 (AM) 制造出低混合电流驱动发射器组件,Glenn Research Copper 84 (GRCop-84) 是一种具有高抗拉强度和导电性的 Cr 2 Nb 沉淀硬化合金。由于构建体积限制,需要对通过激光焊接连接在一起的模块化段进行 AM 制造。开发了一种夹具系统,用于对准和压缩 0.5 毫米厚的对接焊缝,用氩气保护内表面,并防止组装过程中发生变形。外部夹具和夹板对准发射器部分,同时为脉冲 1070 nm 光纤激光器提供光束通道,而内部微型千斤顶在波导段内膨胀,消除连接部分之间的高度偏移并分配氩气保护气。传导模式焊接可防止形成锁孔和光束穿透波导内部,消除飞溅并产生光滑的底部焊道。顶面的表面粗糙度为 R a =2.34 µm,底面的表面粗糙度为 R a =3.17 µm。焊缝的平均 UTS 为 476 MPa,与 900°C 5 小时热处理后的 520 MPa UTS 相似。DOI:PACS 编号:I. 简介 Glenn Research Copper 84 (GRCop-84) [1], [2] 是一种铌铬化物 (Cr 2 Nb) 8 原子%Cr、4 原子%Nb [3] 沉淀硬化合金,适用于采用激光粉末床熔合 (L-PBF) 的增材制造 (AM) [4],[5],[6],[7],[8]。 L-PBF GRCop-84 的热导率在 260 W/m∙K [5] 到 300 W/m∙K [6] 之间(OFC 的 75%-84%),电阻率为 2.5 µΩ∙cm [9],为无氧铜 (OFC) 的 140%,屈服强度为 500 MPa,打印状态下的 UTS 为 740 MPa,伸长率为 20% [4],经 450°C 热处理 (HT) 后屈服强度增加到 810 MPa,UTS 为 970 MPa,伸长率为 9%,或经 900°C HT 后屈服强度降低到 300 MPa,UTS 为 520 MPa,伸长率为 26-37% [10]。与挤压或热等静压 (HIPing) [12] 粉末固结相比,L-PBF [11] 过程中细化沉淀物尺寸可提高强度,因为 2/3 的抗拉强度来自 Orowan 机制 [13]。高抗拉强度和稳定的沉淀物可用于火箭发动机 [5],[6],[7],[8] 或聚变反应堆 [14],[15] 的高温。高热导率和与 Nd:YAG 和光纤激光器的耦合不良 [16] 增加了传统铜合金的表面粗糙度和空隙率 [17]。GRCop-84 的 L-PBF 可实现全密度(> 99.9%)[4],平均垂直侧壁粗糙度为 Ra =3-4 μm [18]。通过机械抛光 [18] 或化学机械抛光 [20],[21],AM GRCop-84 的表面粗糙度[19]降低至 Ra <~0.3 μm,在 4.6 GHz 下实现低损耗。由于 14 vol% Cr 2 Nb [7],[11] 增强了 GRCop-84 的 AM,近红外激光的低温吸收得到了改善。
苏迪普托;巴斯,拉维·N;戈萨尔,苏吉特; Padmanabham,G 智能制造杂志,2018,29,175-190 54. Sahoo, Santosh Kumar;比绍伊,比布杜塔;莫汉蒂,乌彭德拉·库马尔; Sahoo,Sushant Kumar;萨胡,贾姆贝斯瓦尔;沐浴,拉维·纳图拉姆 (Ravi Nathuram);激光束焊接对工业纯钛微观结构和力学性能的影响印度金属研究所学报 70 1817-1825 2017 55. S. Pradheebha、R. Unnikannan、Ravi N. Bathe、K. Chandra Devi、G. Padmanabham 和 R. Subasri;纹理对溶胶-凝胶纳米复合涂层表面润湿性的影响国家技术杂志 13 3 19-23 2017 56. Narsimhachary,D;巴斯,RN; Dutta Majumdar,J;帕德马纳巴姆,G;巴苏,A; 6061-T6铝合金双道激光焊缝组织与力学性能。工程中的激光 (Old City Publishing) 33 2016 57. Rikka, Vallabha Rao; Sahu,Sumit Ranjan;塔德帕利,拉贾帕;巴斯,拉维;莫汉,泰雅加拉詹;普拉卡什,拉朱;帕德玛纳布姆,加德;戈帕兰,拉加万;用于锂离子电池外壳的脉冲激光焊接不锈钢和铝合金的微观结构和力学性能 J Mater Sci Eng B 6 9–10 218-225 2016 58. Moharana, Bikash Ranjan; Sahu,Sushanta Kumar; Sahoo,Susanta Kumar;巴斯,拉维;通过 CO2 激光对 AISI 304 至 Cu 接头的机械和微观结构性能的实验研究工程科学与技术,国际期刊 19 2 684-690 2016 59. Bathe, Ravi;赛克里希纳,V;尼库姆布,SK; Padmanabham,GJAPA;灰铸铁的激光表面纹理化以改善摩擦学行为应用物理 A 117 117-123 2014 60. Bathe, R;帕德马纳巴姆,G;热障涂层高温合金中激光钻孔的评估材料科学与技术 30 14 1778-1782 2014 61. Bathe, Ravi;辛格,阿希什 K;帕德马纳巴姆,G;脉冲激光修整金属结合剂金刚石砂轮对切削性能的影响材料与制造工艺 29 3 386-389 2014 62. Narsimhachary,D;巴斯,拉维·N;帕德马纳巴姆,G;巴苏,A; 6061 T6铝合金激光焊接温度分布对微观组织和力学性能的影响材料与制造工艺 29 8 948-953 2014 63. Yagati, Krishna P;巴斯,拉维·N; Rajulapati,Koteswararao V; Rao,K Bhanu Sankara;帕德马纳巴姆,G;铝合金与钢的无焊剂电弧焊接钎焊材料加工技术杂志 214 12 2949-2959 2014 64. Nikumb, Suwas;巴斯,拉维;克诺夫,乔治 K;汽车、柔性电子和太阳能领域的激光微加工技术 太阳能、显示器和光电子设备的激光加工和制造 III 9180 17-26 2014 65. Padmanabham, G;克里希纳·普里亚,Y;帕尼·普拉巴卡,KV;拉维,N;洗澡,BhanuSankara Rao;P-MIG 和冷金属转移 (CMT) 工艺制成的铝钢接头界面特性和力学性能比较焊接研究趋势:第 9 届国际会议论文集 227-234 2013 66. Bathe, G. Padmanabham 和 Ravi;材料激光加工的应用 Kiran 24 2 2013 年 3 月 14 日 67. Padmanabham, G; Priya, Y Krishna; Prabhakar, KV Phani; Bathe, Ravi N;脉冲 MIG 和冷金属转移 (CMT) 工艺制成的铝钢接头界面特性和力学性能比较焊接研究趋势 2012:第 9 届国际会议论文集 227 2013 68. Chaki, Sudipto;Ghosal, Sujit; Bathe, Ravi N; 使用 GA-ANN 混合模型对脉冲 Nd:YAG 激光切割铝合金板的切口质量预测和优化国际机电一体化与制造系统杂志 5 4-Mar 263-279 2012 69. Sanikommu, Nirmala;Bathe, Ravi;Joshi, AS;激光冲击钻孔中的突破检测。工程激光(Old City Publishing)17 2007 70. Jejurikar, Suhas M;Banpurkar, AG;Limaye, AV;Patil, SI;Adhi, KP;Misra, P;Kukreja, LM;Bathe, Ravi;通过脉冲激光沉积在 Si(100)上沉积的异质外延 ZnO 薄膜的结构、形态和电学特性:空气中退火(800 C)的影响 应用物理学杂志 99 1 2006 71. Sahasrabudhe, MS; Patil, SI; Date, SK; Adhi, KP; Kulkarni, SD; Joy, PA; Bathe, RN;磁性(Fe+ 3)和非磁性(Ga+ 3)离子掺杂在 Mn 位对 La0. 7Ca0. 3MnO3 传输和磁性的影响 固态通信 137 11 595-600 2006 72. Ogale, SB; Bathe, RN; Choudhary, RJ; Kale, SN; Ogale, Abhijit S; Banpurkar, AG; Limaye, AV;边界效应对薄沉降颗粒堆稳定性的影响 Physica A: 统计力学及其应用 354 49-58 2005 73. Alves, G; Doerr, TP; Arenzon, JJ; Levin, Y; Avelar, AT; Monteiro, PB; Bai, BD; Jiang, W; Banpurkar, AG; Ogale, SB;第 354 卷作者和论文索引 psychology 354 463 2005 74. Sahasrabudhe, MS; Bathe, RN; Sadakale, SN; Patil, SI; Date, SK; Ogale, SB;La0. 7Ca0. 3MnO3 中 Mn 位金属离子取代的影响:电荷、自旋、离子半径和Ravi N; 使用 GA-ANN 混合模型对脉冲 Nd:YAG 激光切割铝合金板的切口质量预测和优化国际机电一体化与制造系统杂志 5 4-Mar 263-279 2012 69. Sanikommu, Nirmala;Bathe, Ravi;Joshi, AS;激光冲击钻孔中的突破检测。工程激光(Old City Publishing)17 2007 70. Jejurikar, Suhas M;Banpurkar, AG;Limaye, AV;Patil, SI;Adhi, KP;Misra, P;Kukreja, LM;Bathe, Ravi;通过脉冲激光沉积在 Si(100)上沉积的异质外延 ZnO 薄膜的结构、形态和电学特性:空气中退火(800 C)的影响 应用物理学杂志 99 1 2006 71. Sahasrabudhe, MS; Patil, SI; Date, SK; Adhi, KP; Kulkarni, SD; Joy, PA; Bathe, RN;磁性(Fe+ 3)和非磁性(Ga+ 3)离子掺杂在 Mn 位对 La0. 7Ca0. 3MnO3 传输和磁性的影响 固态通信 137 11 595-600 2006 72. Ogale, SB; Bathe, RN; Choudhary, RJ; Kale, SN; Ogale, Abhijit S; Banpurkar, AG; Limaye, AV;边界效应对薄沉降颗粒堆稳定性的影响 Physica A: 统计力学及其应用 354 49-58 2005 73. Alves, G; Doerr, TP; Arenzon, JJ; Levin, Y; Avelar, AT; Monteiro, PB; Bai, BD; Jiang, W; Banpurkar, AG; Ogale, SB;第 354 卷作者和论文索引 psychology 354 463 2005 74. Sahasrabudhe, MS; Bathe, RN; Sadakale, SN; Patil, SI; Date, SK; Ogale, SB;La0. 7Ca0. 3MnO3 中 Mn 位金属离子取代的影响:电荷、自旋、离子半径和Ravi N; 使用 GA-ANN 混合模型对脉冲 Nd:YAG 激光切割铝合金板的切口质量预测和优化国际机电一体化与制造系统杂志 5 4-Mar 263-279 2012 69. Sanikommu, Nirmala;Bathe, Ravi;Joshi, AS;激光冲击钻孔中的突破检测。工程激光(Old City Publishing)17 2007 70. Jejurikar, Suhas M;Banpurkar, AG;Limaye, AV;Patil, SI;Adhi, KP;Misra, P;Kukreja, LM;Bathe, Ravi;通过脉冲激光沉积在 Si(100)上沉积的异质外延 ZnO 薄膜的结构、形态和电学特性:空气中退火(800 C)的影响 应用物理学杂志 99 1 2006 71. Sahasrabudhe, MS; Patil, SI; Date, SK; Adhi, KP; Kulkarni, SD; Joy, PA; Bathe, RN;磁性(Fe+ 3)和非磁性(Ga+ 3)离子掺杂在 Mn 位对 La0. 7Ca0. 3MnO3 传输和磁性的影响 固态通信 137 11 595-600 2006 72. Ogale, SB; Bathe, RN; Choudhary, RJ; Kale, SN; Ogale, Abhijit S; Banpurkar, AG; Limaye, AV;边界效应对薄沉降颗粒堆稳定性的影响 Physica A: 统计力学及其应用 354 49-58 2005 73. Alves, G; Doerr, TP; Arenzon, JJ; Levin, Y; Avelar, AT; Monteiro, PB; Bai, BD; Jiang, W; Banpurkar, AG; Ogale, SB;第 354 卷作者和论文索引 psychology 354 463 2005 74. Sahasrabudhe, MS; Bathe, RN; Sadakale, SN; Patil, SI; Date, SK; Ogale, SB;La0. 7Ca0. 3MnO3 中 Mn 位金属离子取代的影响:电荷、自旋、离子半径和SB;第 354 卷作者和论文索引 心理学 354 463 2005 74. Sahasrabudhe,MS;Bathe,RN;Sadakale,SN;Patil,SI;Date,SK;Ogale,SB;La0.7Ca0.3MnO3 中 Mn 位金属离子取代的影响:电荷、自旋、离子半径和SB;第 354 卷作者和论文索引 心理学 354 463 2005 74. Sahasrabudhe,MS;Bathe,RN;Sadakale,SN;Patil,SI;Date,SK;Ogale,SB;La0.7Ca0.3MnO3 中 Mn 位金属离子取代的影响:电荷、自旋、离子半径和