• • 适用于直升机和固定翼飞机的单一解决方案 • • 可靠、持久且经过验证的保护 • • 经过验证的能力,可以击败现代先进威胁,包括超短程和多枚导弹交战 • • 灵活的飞机安装选项,超越客户的操作和集成要求 • • 极高的激光目标能量 • • 大大降低全寿命成本和支持要求 主要系统细节
F.电光和激光系统9.1。激光范围查找器眼安全(LRF-312)54 9.2。Mini LRF 55 9.3。轻巧的便携式激光目标指定器56 9.4。突击射击的热瞄准器57 9.5。多功能手持热成像仪58 9.6。手持热图像双筒望远镜(未冷却)59 9.7。被动夜视系统60 9.7.1。intas ri tlim/lmg 61 9.7.2的被动夜视。被动夜间射击发射器62 9.7.3。被动夜视双筒望远镜63 9.7.4。被动夜视镜64 9.7.5。被动夜视单眼65
本文提出了一种利用多旋翼无人机跟踪移动地面车辆并着陆的自主系统。详细讨论了该系统的技术开发。包括传感器选择与集成、目标检测算法与实现、无人机数学模型和飞行控制器设计。该系统利用近红外摄像机,即使在夜间或低照度下也能检测到标记,无人机机载处理器频率高达 18 Hz。整个系统首先在 MATLAB 中仿真,然后应用于实际无人机。小型四旋翼无人机在移动的小型卡车上自主着陆的成功飞行试验表明,该设计有效且适用于实际应用。提出的视觉激光目标跟踪性能在静态标记下实现了 99.2% 的成功率,在移动标记下实现了 94.4% 的成功率。
本文提出了一种利用多旋翼无人机跟踪移动地面车辆并着陆的自主系统。详细讨论了该系统的技术开发。它包括传感器的选择和集成、目标检测算法和实现、无人机的数学模型和飞行控制器设计。该系统利用近红外摄像机,即使在夜间或低照度下也能检测到标记,无人机机载处理器的频率最高可达 18 Hz。整个系统首先在 MATLAB 中仿真,然后应用于实际的无人机。小型四旋翼无人机在移动的小型卡车上自主着陆的成功飞行试验表明,该设计是有效且可行的。所提出的视觉激光目标跟踪性能在静态标记下实现了 99.2% 的成功率,在移动标记下实现了 94.4% 的成功率。
氟化氩 (ArF) 是目前波长最短的激光器,能够可靠地扩展到高增益惯性聚变所需的能量和功率。ArF 的深紫外光和提供比其他当代惯性约束聚变 (ICF) 激光驱动器更宽带宽的能力将大大提高激光目标耦合效率,并使驱动内爆的压力大大提高。我们的辐射流体动力学模拟表明,使用亚兆焦耳 ArF 驱动器可以获得大于 100 的增益。我们的激光动力学模拟表明,电子束泵浦 ArF 激光器的固有效率可以超过 16%,而效率第二高的氟化氪准分子激光器的固有效率约为 12%。我们预计,使用固态脉冲功率和高效电子束传输到激光气体(美国海军研究实验室的 Electra 设施已进行了演示),将 ArF 光传输到目标的“电插式”效率至少应达到 10%。这些优势可以推动开发尺寸适中、成本较低的聚变发电厂模块。这将彻底改变目前对惯性聚变能源过于昂贵和发电厂规模过大的看法。本文是讨论会议主题“高增益惯性聚变能源前景(第 1 部分)”的一部分。
军用光学系统为关键任务中的目标识别和跟踪提供高性能和可靠的监控。这些系统在现代战争中已成为不可或缺的一部分,在现代战争中,处理和分析实时视觉数据的能力可以决定行动的成败。通过将先进的光学技术与强大的设计方法相结合,军用系统旨在为各种应用提供精确有效的解决方案。在这种情况下,光学元件必须确保出色的图像清晰度、分辨率和耐用性,以承受具有挑战性的作战环境。光电系统具有同步图像传输等关键功能,可通过提供情报、侦察、监视和瞄准功能在军事领域脱颖而出。这些系统使军事人员能够在复杂和动态的场景中远距离检测、识别和跟踪目标。此外,世界各地的许多现代军队都在投资增强现实 (AR) 和虚拟现实 (VR) 工具,以提升其系统,获得对敌方部队的优势,并防止战场上的损失 [1]。在这些系统中,中继透镜是远距离清晰无损传输图像的重要组件。这些镜头可确保传输图像的完整性和保真度,这一要求在时间敏感和任务关键型操作中尤为重要。在热像仪等技术中正确使用中继镜头对军事安全至关重要 [2]。例如,热成像系统严重依赖中继镜头来保持图像质量,使操作员即使在能见度低的条件下也能检测到威胁。在激光测距仪 (LRF) 和激光目标指示器 (LTD) 等系统中,中继镜头的使用对于准确引导激光束至关重要
非 MDE:还包括可认证地面控制站;TPE-331-10-GD 发动机;M299 地狱火导弹发射器;KIV-77 加密贴花和其他敌我识别 (IFF) 设备;KOR-24A 小型战术终端 (STT);AN/SSQ-62F、AN/SSQ-53G 和 AN/SSQ-36 声纳浮标;ADU-891/E 适配器组测试仪;通用弹药内置测试 (BIT) 重新编程设备 (CMBRE);GBU-39B/B 战术训练弹、武器装载机组教练机和仪表可靠性评估车辆;便携式飞行前/飞行后设备 (P3E);CCM-700A 加密设备;KY-100M 窄带/宽带终端;KI-133 加密单元; AN/PYQ-10 简易钥匙装载机;自动识别系统 (AIS) 应答器;ROVER 6Si 和 TNR2x 收发器;MR6000 超高频 (UHF) 和甚高频 (VHF) 无线电;Selex SeaSpray 有源电子扫描阵列 (AESA) 监视雷达;HISAR-300 雷达;SNC 4500 自动电子监视措施 (ESM) 系统;SAGE 750 ESM 系统;Due Regard 雷达 (DRR);MX-20 电光红外 (EO-IR) 激光目标指示器 (LTD);Ku 波段 SATCOM GAASI 可移动地面站 (GATES);C 波段视距 (LOS) 地面数据终端;AN/DPX-7 IFF 应答器;紧凑型多波段数据链 (CMDL);初始备件和维修零件、消耗品、配件以及维修和退货支持;安全通信、精确导航和加密设备;弹药支持和支持设备;测试和集成支持和设备;机密和非机密软件交付和支持;机密和非机密出版物和技术文档;人员
摘要。随着近几十年来激光技术的发展,该设备已用于多种应用,例如医学,军事,工业,全息,光谱和天文学。在过去的几年中,军事行动进行更好的沟通取决于射频。对安全威胁和电磁干扰的脆弱性是该电磁频谱区域的主要问题。因此,注意可见和红外(IR)区域。此频谱提供了数据的安全传输。由于狭窄光束的差异和光束的相干性,拦截激光信号的概率非常低。因此,它使该设备成为安全军事行动的好候选人。结果,激光设备和激光引导的武器(LGW),例如激光目标指定者和横梁骑手,已成为战场上不可否认的工具。通过提供激光检测,到达角度,波长歧视和时间表征来减少对LGW威胁的脆弱性是激光警告系统(LWS)的主要意图。该系统由三个主要子系统组成。光学子系统将由频谱过滤器,聚焦镜头和检测一个组成,该检测是由唯一数组配置(尤其是IR光电探测器(IRPD)]和处理子系统中的少数检测器制成的。本评论论文给出了LWSS检测子系统中使用的光电遗传学的特定浓度。另外,在表中比较了所有研究的结构。在过去的几十年中,随着纳米制作和纳米技术取得的进展,已进行了结果研究,以提高IRPD的性能,例如提高生产产量,使其在制造过程中变得简单,降低制造成本,并提高工作温度。此外,已经对一些纳米结构进行了调查,以增强IRPD的光耦合和光 - 物质相互作用。最后,我们将分析我们在纳米基质研究中心模拟和构建的检测子系统。
弗雷德里克斯堡,弗吉尼亚州22406摘要美国陆军研究实验室(ARL)正在探索技术,以提供低成本的火灾,适用于直接和间接消防武器系统。这些应用之一涉及一个前向观察者(FO),用激光斑点指定目标,并在船上搜索弹药,检测反射能量以允许终端指导。这种方法,称为半活性激光(SAL)指南,已用于许多空运弹药中,包括炸弹,导弹和弹丸。但是,这些系统的成本是由高质量光学,高灵敏度检测器和专业电子设备驱动的,它阻碍了它们迁移到枪支弹药(例如迫击炮,炮兵和手榴弹)中。要探索,开发和展示最低的成本解决方案,ARL投资了一个称为较小,更轻,更便宜的弹药组件(SLCMC)的陆军技术目标(ATO)。具体来说,基于商业组件(COTS)和质量生产技术的Sal Seeker硬件正在原型中,用于与枪支发射的弹丸和激光目标指定器一起使用。Seeker系统由几个印刷电路板板,一个微处理器,四翼检测器和模制的光学镜头单元组成。该寻求者旨在快速更新弹丸孔的角度,与其他皮带向下的传感器接口,并将数据馈送到机上指导,导航和控制(G,N&C)系统中,以允许进行弹丸操作。探索者的设计和基本特征将在论文和演示中进行讨论和介绍。关键词寻求者,弹药,精密火灾,炮兵,半活性激光,指导系统,带有动态科学的绑带传感器 *,并根据ARL,APG,MD
Dóm tér 9,匈牙利 电子邮件:galbx@chem.u-szeged.hu 摘要 激光诱导击穿光谱 (LIBS) 是原子光谱中一种强大且蓬勃发展的分析技术。尽管 LIBS 也适用于气态、气溶胶和液体样品,但它主要用于固体样品的分析。这是因为所有其他类型的样品在灵敏度和实用性方面都带来了多重挑战。(批量)液体样品的分析尤其具有挑战性,因为它们容易出现聚焦困难、飞溅、等离子猝灭等,导致检测限和重现性降低以及激光能量需求大幅增加 [1]。为了应对这些挑战,文献中报道了多种方法。它们中的大多数依赖于液固转化,而另一些则使用专门的设备将液体呈现为射流、薄膜或液滴等。[2, 3]。尽管如此,虽然消除了批量液体分析的一些缺点,但迄今为止提出的方法在灵敏度、重现性或实用性方面与固体分析相比仍然存在不足。在本研究中,我们提出了一种通过 LIBS 分析液体微样品的替代方法,即利用亲水性强的纳米多孔玻璃作为基底。这种方法的前提是毛细管力会将与玻璃接触的任何水样驱赶到纳米孔中,形成一个细小的两相结构,其中的固体玻璃框架实际上充当激光目标。这种结构在实践中有多种优势:a.) 分析需要非常少量的液体样品(5-10 µ L);b.) 不存在批量液体样品的常见问题;c.) 纳米级结构确保有效的激光耦合和液体样品的均匀分布,从而有利于重现性。对这种直接液体分析方法进行了彻底的研究,研究了分析优势和能力以及可实现的检测限和重现性。致谢作者非常感谢 EKÖP-24-I 提供的资金支持。塞格德大学的大学研究奖学金计划,以及国家研究、开发和创新办公室 (NKFIH) 的 K146733 项目和由奥地利英飞凌科技股份公司在 IPCEI 微电子课程中资助的工业合作参考文献 [1] G. Galbács,Anal. Bioanal. Chem. 407 (2015) 7537。 [2] K. Keerthi,SD George,SD Kulkarni,S. Chidangli,VK Unnikrishnan,Opt. Laser Technol. 147,(2022) 107622。 [3] I. Goncharova,D. Guichaoua,S. Taboukhat,A. Tarbi 等,Spectrochim. Acta B 217 (2024) 106943。