该信息的生成和提供仅用于进行深入的技术讨论,并不表明,也不应被解释为表明政府以暗示或其他方式承诺或意图从事任何活动、描述任何要求或签订任何协议、合同或其他义务。
摘要近年来,极端紫外线和软X射线自由电子激光(FEL)发育的一种重要趋势是外部激光器使用播种,旨在提高产生的脉冲的相干性和稳定性。高增益谐波生成播种技术是在费米首次实施的,并提供了较高的相干性以及强度和波长稳定性,可与台式超快激光相当。在费米(Fermi),种子激光器具有另一个非常重要的功能:它是泵 - 探针实验中使用的外部激光脉冲的来源,允许一个人实现记录的时正时正时抖动。本文介绍了单一和双重效率方案中费米种子激光的设计,性能和操作模式。此外,还提供了计划的升级,以应对升级到具有回声的谐波生成模式的挑战。
美国海军在导弹驱逐舰杜威号上安装了第一套 ODIN 激光武器系统。海军技术专家 7 月 7 日在一次网络研讨会上表示,该系统将在未来三年内安装在另外八艘舰船上。克里斯·卡瓦斯 弗吉尼亚州阿灵顿 — 最积极参与定向能 (DE) 武器开发的美国海军官员表示,该部门专注于向作战人员部署海上部门的激光系统系列,但也在努力提高系统的功率和光束控制。
摘要。大型光学元件的激光损伤抗性仍然是高能/高功率 (HEL/HPL) 激光系统的维护成本、可靠性和进一步发展的重要限制因素。由于许多制造商在纳秒范围内提供不同的激光损伤阈值 (LIDT) 值,仅基于数字的简单排名可能无法提供最佳选择的清晰图像。尽管遵循 ISO 21254 标准,但测试程序的变化使选择过程更加复杂。通过采用全面的一对一测试程序,可以观察到影响 LIDT 值的各种参数。将概述激光束大小、被测光学器件的光谱特性以及表面的可能污染如何影响 LIDT 值。
摘要 在高能千瓦平均功率纳秒激光系统 Bivoj 中实现了一种基于硅空间光调制器上液晶的全自动故障安全光束整形系统。整形系统可校正系统前端的增益不均匀性和波前像差。通过整形,成功改善了前端输出处的光束强度分布和波前。由光束质量参数定义的光束均匀性提高了两到三倍。波前的均方根值提高了 10 倍以上。因此,来自第二个前置放大器的整形光束导致第一个主低温放大器输出处的光束轮廓得到改善。整形系统还能够创建非普通光束形状、在光束中印记交叉引用或屏蔽光束的某些部分。
I. 引言 囚禁离子是量子信息科学技术以及量子计算的主要平台 [1]。该平台具有高保真量子门 [2, 3, 4, 5, 6]、量子比特之间更广泛的连接性[7, 8]以及实现容错量子计算的潜力 [9, 10, 11]。随着量子比特和门数量的增加,系统的精确控制变得更加复杂,采取稳定和工程化的方法至关重要 [12, 13]。在量子计算的背景下,组件的可靠性减少了所需校准量并提高了数据收集的占空比[7, 14, 15]。操纵和控制囚禁离子量子比特依赖于多束激光与离子相互作用,因此可靠的光源是基于囚禁离子的量子计算机的关键部分。合适的激光系统应提供多种颜色的光,这些光不仅能够抵抗错位和机械振动,而且能够很好地稳定在感兴趣的原子跃迁频率上。任何空间或光谱不匹配都可能导致量子计算操作失败,这不仅是因为量子比特状态控制中的错误,还因为离子加载和冷却效率低下,这会增加实验的占空比。尽管构建这些光学系统的技术
(i) DSO 4 通道,100MHz,采样率为 2 GS/s (ii) 任意波函数发生器双通道,25 MHz,采样率为 125 MS/s (iii) 375 激光系统用于钙离子化 (iv) 422 激光系统用于钙离子化 (v) 850 激光系统用于钙离子激光再泵浦 (vi) 854 激光系统用于钙离子激光再泵浦 (vii) 866 激光系统用于钙离子激光再泵浦 (viii) 397 激光系统用于钙离子激光冷却 (ix) 780 激光系统用于铷原子冷却 (x) 780 激光系统用于铷原子冷却 (xi) 用于参考腔的模拟电子模块 (xii) Kimball Physics 两个 16 端口真空室,由 SS 316L(非磁性钢)制成,用于铷原子阱和钙离子阱实验 (xiii) 精度为 10 MHz 的激光波长计 (xiv) RF频谱分析仪 10kHz-9GHz (xv) 用于 Rb 原子实验和 Ca 离子阱实验的真空组件(CF 毛坯、CF 和 KF 波纹管、CF 锥形接头、CF I 型件、CF T 型件、CF 四通)(xvi) 主动隔振光学台(10 英尺 X 4 英尺)2 个。(xvii) 示波器 70 MHz 4 通道 - 2 个 (xviii) 任意波函数发生器 - 2 通道 - DC - 20 MHz - 3 个 (xix) 低纹波和低失真可编程双极直流电源(0-30V,0-5A)- 3 个 (xx) 数据采集系统 - 200 MHz DSO(数字存储示波器)
由高度相关或“纠缠”光子对组成的量子光源越来越成为经典光源的流行替代品,以执行显微镜和光谱法。纠缠的光子对可以复制并增强光谱信号,并且与通常用于执行这些测量的脉冲激光系统相比,具有实际优势。例如,纠缠的光子是固有的低频率,可以在没有不希望的光效应的情况下进行测量,例如样品加热和退化或非理想的光诱导样品行为。此外,与具有可比频率带宽和时间分辨率的最先进的脉冲激光系统相比,可以对纠缠的光子源进行纠缠和操纵。在一起,这些功能可以允许开发不依赖笨重,昂贵的激光系统,这些激光系统需要专家团队进行维护。反过来,这种仪器的发展可以使更多的原子和物质表征的外来形式更广泛地访问。
fibertek是一家小型企业,拥有35年的领导历史,可以为防御和航空航天社区提供基于先进的激光系统和技术,重点是针对最具挑战性的环境开发的首个系统。我们是为NASA(例如Calipso和ICESAT-2激光系统)以及开发用于LIDAR的高级激光和传感器系统和国防部中其他应用的高级激光和传感器系统的领导者(例如,Calipso和ICESAT-2激光系统)。Fibertek具有固态和基于纤维的激光系统的深层组合;已经提供了多个LIDAR传感器,用于3D成像,跟踪和导航;从低地球轨道到深空的多个任务场景,在太空激光通信中具有快速增长的产品线。fibertek养育了进步
提示号24-108-0420简介在美国制造或销售的激光系统必须满足美国食品药品监督管理局(FDA)联邦激光产品绩效标准(FLPPS)中规定的要求。1在美国进行激光调节的FDA,在设计要求损害任务绩效时,已对军事特异性激光系统的特定要求予以豁免。一种特定于军事的激光是一种用于战斗,战斗训练或为国家安全而分类的激光。这通常被称为“军事豁免”。激光制造商和国防部(国防部)对采购军事特定激光的豁免过程的误解导致了滥用军事豁免的情况。FDA豁免号批准了对FDA要求的军事豁免76EL-01DOD 2,并在FDA激光通知号52。3国防部教学部6055.15 4和军事标准(MIL-STD)1425a中解释了发出豁免的国防部政策。5陆军对军事激光豁免的政策在陆军法规(AR)385-10中详细介绍(陆军安全计划,2017年)第7-8E段。背景激光系统在美国为陆军制造或销售,必须遵守FDA FLPP的所有规定,除非允许豁免特定的控制措施。这些评估解决了FDA FLPPS所需的激光系统危害和系统的安全控制措施。美国陆军公共卫生中心(APHC)的非离子辐射部(NRD)对陆军采购的激光系统进行激光危害评估。表1中包括FDA FLPP中性能要求的一般概述。FDA激光通知56 6允许制造商在国际电力技术委员会(IEC)标准60825-1,版本3,7中符合可比条款,以代替FDA FLPPS中的那些条款,但仍被认为是FDA符合FDA的规定。可以在参考段落中找到更多详细的信息。这些控制措施是考虑到商业,实验室和医疗应用的,有些不利于军事应用。资格要求有资格使用军事豁免,激光系统必须符合以下所有标准:1。激光系统由国防部(陆军,海军/海军陆战队和空军)拥有和使用。所有其他联邦办公室/机构(海岸警卫队,国土安全部,边境巡逻队,联邦调查局等)均不符合资格。制造商开发出出售给其他无法完全遵守FDA FLPS的联邦机构的激光系统必须向联邦政府寻求指导