摘要:重要的是研究形成的hastelloy-X合金的激光粉末床融合(LPBF)的微观结构和质地演变,以通过调节Hastelloy-X形成过程参数的调节来建立过程,微结构和性能之间的紧密关系。在本文中,hastelloy-X合金的成分是用不同的激光能密度(也称为体积能密度VED)形成的。研究了Hastelloy-X的致密机理,并分析了缺陷的原因,例如毛孔和裂缝。使用电子反向散射技术研究了不同能量密度对晶粒尺寸,质地和方向的影响。结果表明,随着能量密度的增加,平均晶粒尺寸,原发性树突臂间距和低角度晶界的数量增加。同时,VED可以增强质地。随着能量密度的增加,质地强度会增加。在96 J·mm -3的VED处获得了最佳的机械性能。
聚合物是超快激光器处理的首批材料之一。然而,尚未完全了解近红外激光束的吸收性质,因此以高能量效率处理聚合物材料仍然具有挑战性。在这项研究中,聚丙烯(PP)(PP)的光学特性(反射率,透射率和吸收性)的脉冲到脉冲演化,这是在许多工业应用中广泛使用的重要聚合物材料,是通过对广泛的脉动能进行的时间分辨测量来确定的。目标是区分不同激光 - 摩擦相互作用方案中的线性和非线性吸收,并选择产生最高能量效率的处理条件。实验是通过在基于椭圆形的镜像设置中记录每个激光脉冲的反射和传输来执行的,该设置可以收集散射反射,并几乎完全覆盖。吸收是根据实验数据计算的,并使用线性和非线性吸收组成的模型来分析结果。发现PP从脉冲到脉冲发生了巨大的形态变化,伴随着光学特性的变化,即激光条件的调整以充分利用激光能。他们的结果可以有助于提高聚合物对高通量操作的超舒服激光处理中的能源效率。
利用三维动力学模拟,我们研究了具有预填充圆柱形通道的结构化激光辐照目标所发射的准直伽马射线束。该通道引导入射激光脉冲,从而产生缓慢发展的方位等离子体磁场,该磁场有两个关键功能:增强激光驱动的电子加速和诱导高能电子发射伽马射线。我们的主要发现是,通过利用具有最佳密度的通道,可以在不增加激光强度的情况下显著提高激光能量到伽马射线束 (5 ◦ 开角) 的转换效率。当我们将 P 从 1 PW 增加到 4 PW 时,保持激光峰值强度固定在 5 × 10 22 W/cm 2 ,转换效率随着入射激光功率 P 大致线性增加。这种缩放是通过在通道中使用 10 到 20 n cr 之间的最佳等离子体密度范围来实现的,其中 n cr 是电磁波的经典截止密度。相应的光子数按 P 2 缩放。一个直接受益于这种强缩放的应用是通过双光子碰撞产生对,在固定激光强度下,产生的对的数量按 P 4 增加。
激光能量(激光椎间盘切除术)或射频偶联(核成形术)描述/背景激光能(激光盘切除术)和辐射频(RF)共振成形术(核成形术)已被评估以减轻椎间盘的解压缩。在荧光镜指导下激光椎间盘切除术,将针或导管插入椎间盘核中,并通过其指向激光束以使组织蒸发。对于椎间盘核成形术,双极射频能量被指向椎间盘上浸泡组织。正在评估这些微创手术以治疗椎间盘痛。椎间盘底部疼痛盘状下腰痛是一种常见的多因素疼痛综合征,涉及腰痛而没有辐射症状的发现,并结合了放射学确认的退行性椎间盘疾病。典型的治疗包括对物理疗法和药物治疗的保守治疗,在更严重的情况下可能会进行手术减压。治疗典型治疗包括对物理疗法和药物管理的保守治疗,在更严重的情况下可能会进行手术减压。多年来,随着与椎间盘疾病相关的下腰痛的治疗,已经研究了多种微创技术。技术可以广泛分为旨在去除或烧毁盘材料的技术,从而对盘进行解压缩,以及旨在改变盘环的生物力学的技术。前一种类别包括葡萄球蛋白注射,自动经皮腰椎椎间盘切除术,激光椎间盘切除术,以及最近使用RF能量的椎间盘减压,被称为椎间盘核成形术。
电动汽车(电动汽车)中座舱对电池选项卡的激光焊接至关重要。确保焊接质量至关重要,因为它取决于诸如孔隙率的产生,熔融池中的流体流动,施加激光功率和焊接速度等因素。然而,常规激光焊接技术主要侧重于沿焊接距离调节激光参数,努力有效地减轻孔隙率的形成。虽然对激光角沿焊缝截面的效应进行了广泛的研究,但尚未探索过轴轴激光角的影响,即在垂直于焊接方向的平面中的角度的效果,尚未探索。这项研究通过在不同激光能密度下改变激光轴轴的角度,以优化专门为减少孔隙率的过程,从而引入了一种创新的激光焊接方法。通过实施铝AA1050的激光焊接的三维计算流体动力学(CFD)模型,我们在采用不同的离轴角度的同时提供了详细的分析流体流量和熔体池尺寸。我们的模型结合了多种反射,向上的蒸气压和后坐压力,以解释不同激光轴轴轴的孔隙率的形成。结果表明,在优化的激光功率和焊接速度下增加激光轴的角度可显着降低孔隙率。在激光外轴角为4.92°时,数值分析与实验熔体池宽度为11%,最小误差为2.74°,最小误差为2.6%。对于熔体池深度,在4.92°的离轴角度为4.2%,最小差为7.2%,在7.42°的离轴角度下的最小差为0.5%。本研究提出了一种通过解决孔隙形成的特定挑战来改善激光焊接过程的新方法。
电动汽车(电动汽车)中座舱对电池选项卡的激光焊接至关重要。确保焊接质量至关重要,因为它取决于诸如孔隙率的产生,熔融池中的流体流动,施加激光功率和焊接速度等因素。然而,常规激光焊接技术主要侧重于沿焊接距离调节激光参数,努力有效地减轻孔隙率的形成。虽然对激光角沿焊缝截面的效应进行了广泛的研究,但尚未探索过轴轴激光角的影响,即在垂直于焊接方向的平面中的角度的效果,尚未探索。这项研究通过在不同激光能密度下改变激光轴轴的角度,以优化专门为减少孔隙率的过程,从而引入了一种创新的激光焊接方法。通过实施铝AA1050的激光焊接的三维计算流体动力学(CFD)模型,我们在采用不同的离轴角度的同时提供了详细的分析流体流量和熔体池尺寸。我们的模型结合了多种反射,向上的蒸气压和后坐压力,以解释不同激光轴轴轴的孔隙率的形成。结果表明,在优化的激光功率和焊接速度下增加激光轴的角度可显着降低孔隙率。在激光外轴角为4.92°时,数值分析与实验熔体池宽度为11%,最小误差为2.74°,最小误差为2.6%。对于熔体池深度,在4.92°的离轴角度为4.2%,最小差为7.2%,在7.42°的离轴角度下的最小差为0.5%。本研究提出了一种通过解决孔隙形成的特定挑战来改善激光焊接过程的新方法。
引言近几十年来,超快激光器已经迅速发展为更高的性能。超快激光器具有三个关键特征,可以使其在市场领域的应用:首先,它们的短脉冲持续时间允许在时间域中进行高分辨率测量。换句话说,它们是测量高速现象的几乎完美的超快“ flash”。第二,由于激光能集中在短脉冲中,因此它们具有很高的峰值功率,这可以实现关键的材料相互作用,最重要的是“冷消融”,短光学脉冲几乎可以去除或消融任何材料,而不会在样品处理的样品中产生明显的残留热量。此技术允许对当今使用的许多现有材料和薄膜进行非常精确的微加工。它也有可能在未来产品中使用。此外,它允许新型的生物医学和组织手术应用。第三,短时脉冲具有相应的光带宽,并且可以利用此功能来进行精确的测量诊断和计量学。在几篇评论文章1,2中给出了这些功能和许多其他应用的更详细概述,并且超出了本研究的范围。半导体可饱和吸收镜(SESAM)模式的激光器与1990年代3,4期间开发的二极管泵式固态激光器(DPSSL)相结合的简单性,导致了许多新的,实用的,实用的,实用的,可商购的超级武器激光系统。这些激光系统已在许多相关应用中广泛使用,这些应用程序正在更换昂贵,渴望,维护密集型激光器。最近廉价,更紧凑的半导体磁盘激光器(SDL)的发展可能会开放新市场,例如紧凑的测量设备。此结果最终将使超快速激光器能够访问高量消费市场,例如汽车工业中的光检测和范围(LIDAR)技术