摘要 激光能量与电子的耦合是强激光-等离子体相互作用中几乎所有主题的基础,包括激光驱动的粒子和辐射产生、相对论光学、惯性约束聚变和实验室天体物理学。我们报告了对箔靶总能量吸收的测量结果,这些箔靶厚度范围从 20 μ m(对于该厚度,靶保持不透明且表面相互作用占主导地位)到 40 nm(对于该厚度,膨胀可实现相对论诱导的透明性和体积相互作用)。我们测量到,在最佳厚度 ∼ 380 nm 处,总峰值吸收率为 ∼ 80%。对于较薄的靶,虽然总吸收率会降低,但逃离靶的高能电子数量会增加。2D 粒子模拟表明,这是由于强激光脉冲在靶体积内传播时,电子被直接激光加速所致。结果表明,总能量与电子的耦合和有效加速到更高能量之间存在权衡。
摘要。本文介绍了为模拟不锈钢 SS316L 定向能量沉积中形成的熔池中的流体流动和传热而开发的数值模型。该模型结合了重要的热量和动量源项。能量源项包括激光能量、相变潜热、对流热损失、辐射热损失、蒸发热损失以及由于熔融颗粒沉积到熔池中而增加的能量。动量源项是由表面张力效应、热毛细(Marangoni)效应、热浮力、相变引起的动量衰减、熔融颗粒动量以及由于蒸发引起的反冲效应引起的。模拟表明,熔池中预测的流动和传热会影响最终的形状和尺寸。在当前采用的工艺参数下,熔池细长、宽而浅,具有凹陷的自由表面和向外的对流。向外流动是由熔池中心的高温主导区域引起的,因此表面张力的温度梯度为负。
b'我们表明,与激光散斑相关的质动力可以以类似于库仑散射的方式散射激光产生的等离子体中的电子。给出了实际碰撞率的解析表达式。电子散斑碰撞在高激光强度或 \xef\xac\x81lamentation 期间变得重要,\xef\xac\x80影响长脉冲和短脉冲激光强度范围。例如,我们 \xef\xac\x81 发现国家点火装置空腔激光重叠区域中的实际碰撞率预计将超过库仑碰撞率一个数量级,从而导致电子传输特性发生根本变化。在短脉冲激光-等离子体相互作用的高强度特性下( I \xe2\x89\xb3 10 17 Wcm \xe2\x88\x92 2 ),散射足够强,导致激光能量直接吸收,产生能量缩放为 E \xe2\x89\x88 1 . 44 I/ 10 18 Wcm \xe2\x88\x92 2 1 / 2 MeV 的热电子,接近实验观察到的结果。 PACS 数字: PACS 数字。'
本研究探讨了采用原料丝的激光金属熔合。我们研究了各种工艺参数如何影响被丝和工件吸收的光束能量比例以及从原料丝到熔池的金属转移。为了进行这项研究,开发了一个跟踪自由表面变形的热流体动力学模型,以包括实心丝的进给并预测其熔化。金属吸收的光束能量比例被建模为局部表面曲率和温度的函数,考虑了多次菲涅尔反射和吸收。该模型应用于钛合金 (Ti-6Al-4V),采用 1.07 μ m 激光器和传导模式工艺。进行了各种丝送料速率的实验以评估模型预测工艺的能力,并获得了良好的一致性。研究的不同参数是光束角位置、丝角位置、丝送料速率和光束-丝偏移。模拟结果的分析提供了对激光能量使用的详细物理理解。报告强调,热毛细和瑞利-普拉托不稳定性可能导致从连续金属传输模式向滴金属传输模式的转变。因此,抑制这些不稳定性可能允许使用更宽的工艺窗口。
定向能武器的破坏力(杀伤力)来自随着时间的推移传递给目标的能量。这种集中的能量可以对从非致命到致命的整个范围产生影响。例如,激光可以在几秒钟内切割钢、铝和许多其他材料。它们可以非常有效地导致加压容器爆炸,例如导弹推进剂和氧化剂罐。它们可以摧毁、降级或致盲许多其他包含传感器和电子设备的系统。对于高能激光,杀伤力取决于激光的功率输出、光的纯度和浓度(光束质量)、目标范围、将激光保持在目标瞄准点上的能力(抖动控制和跟踪)以及激光穿越目标的大气环境。在最后一个因素中,激光的频率和交战高度将对大气对激光杀伤力的影响程度产生重大影响。激光能量可以以连续波或脉冲形式产生,这也会影响其杀伤力。高能激光器 (HEL) 的平均功率范围从几千瓦到兆瓦。高功率微波 (HPM) 和高功率毫米波武器发射的电磁能量束通常从大约 10 兆赫到 100 千兆赫的频率范围。像激光一样,
本文介绍了使用近红外(NIR)激光源,直接检测电磁和被动红外成像系统的新技术。这些技术允许直接确定大气灭绝,并通过采用合适的反转算法,对某些重要的天然和人造大气成分的间接测量,包括二氧化碳(CO 2)。所提出的技术适用于使用飞机,卫星,无人驾驶汽车(UAV),降落伞/滑行车辆,Roving Surface车辆(RSV)或永久地面装置(PSI)执行的遥感任务。拟议的各种技术在不同情况下提供了相对优势。所有这些都是基于对已知几何和反射特性目标表面的激光能量/功率的测量,该测量是通过红外检测器和/或用于辐射的红外摄像头的测量值。实验结果相对于地面和飞行试验提供了用激光系统进行的飞行试验,该激光系统在近红外(NIR)= 1064 nm和= 1550 nm。这包括在各种大气条件下使用10 Hz和20 kHz PRF NIR激光系统执行的地面测试,以及在龙卷风飞机上安装的10 Hz机载NIR激光系统进行的飞行试验,飞到地面上的22,000英尺高度为22,000英尺。未来的活动计划验证为CO 2柱密度测量开发的大气检索算法,重点是机场和其他高空交通密度环境的飞机相关排放。
高性能激光驱动辐射源是研究高能量密度物质、利用 kJ PW 激光系统进行对产生和中子产生的研究的重点。在这项工作中,我们提出了一种高效方法,在直接激光加速 (DLA) 电子与几毫米厚的高 Z 转换器相互作用时产生超高通量、高能轫致辐射。在中等相对论强度的亚皮秒激光脉冲与用纳秒激光脉冲辐照低密度聚合物泡沫获得的近临界密度长尺度等离子体相互作用时,产生了能量高达 100 MeV 的直接激光加速电子定向束。在实验中,观察到了通过光核反应产生的钽同位素,阈值能量高于 40 MeV。使用 Geant4 Monte Carlo 程序,以测量的电子能量和角分布作为输入参数,对 180 Ta 至 175 Ta 同位素记录产量的轫致辐射谱进行了表征。结果表明,当直接激光加速电子与钽转换器相互作用时,会产生平均光子能量为 18 MeV 的定向轫致辐射,在巨偶极共振(GDR)及以上(≥ 7.5 MeV)的能量范围内每次激光发射会产生 ~2 · 10 11 个光子。这会产生 ~6 × 10 22 sr − 1 · s − 1 的超高光子通量,并将聚焦激光能量转换为高能轫致辐射,转换效率达到创纪录的 2%。
定向金属沉积 (DMD) 是一种很有前途的金属增材制造技术,其中零件是通过使用沿预定义轨迹移动的激光束融合注入的金属粉末颗粒来制造的。刀具路径通常包括曲线或边缘部分,机器轴需要相应地减速和加速。因此,局部施加的激光能量和粉末密度在沉积过程中会发生变化,导致局部过度沉积和过热。这些偏差还受到刀具路径几何形状和工艺持续时间的影响:先前的沉积可能会在时间和空间上影响相近的刀具路径段,导致局部热量积聚,并形成与使用相同参数沉积的其他段中产生的轮廓和微观结构不同的轮廓和微观结构,这是由于几何形状和温度相关的集水轮廓所致。为了防止这些现象,需要轻量级和可扩展的模型来预测可变刀具路径的工艺行为。在本文中,我们提出了一种基于人工智能的方法来处理 Inconel 718 的工艺复杂性和多种刀具路径变化。考虑到先前定义的刀具路径,使用人工神经网络 (ANN) 来预测沉积高度。通过打印包含多个曲率和几何形状的随机刀具路径,生成了训练数据。基于训练后的模型,可以成功预测整个刀具路径的显著局部几何偏差,并且可以通过相应地调整工艺参数来预测。
激光雷达 (光检测和测距) 是一种利用发射激光脉冲的飞行时间来测量仪器和目标之间精确距离的方法 ( Gardner, 1982 ; Sun, 2017 ; Zhou et al., 2017 )。当作为轨道有效载荷时,激光雷达可对表面进行连续测距测量,沿航天器轨道建立地形剖面。只要有合适的轨道和测量节奏,就可以构建整个星球的地形图,精度达到厘米到米,并具有精确的大地测量控制。对月球和火星的轨道激光雷达测量提供了全球地形图,这些图是科学研究和探索工作的基础数据集。通过测量透射和反射的激光脉冲能量,可以确定激光波长下表面的反射率,而不管自然照明条件或表面的热状态如何。从这个角度看,我简要总结了激光雷达在行星科学应用方面的历史,从阿波罗 15 号激光高度计开始,并确定了几种与最紧迫的行星科学问题相关的未来技术和测量概念。我的目的是强调如何以新的方式使用两种基本的激光雷达测量(飞行时间和接收的激光能量)来提供独特的科学测量。我将这个观点限制在行星科学激光雷达研究上,并不关注丰富的地球科学激光雷达任务、地面和机载研究,也不讨论激光雷达在导航和制导目的上的严格使用,因为它越来越多地用于航天器对接、地形相对导航 (TNR) 以及着陆制导和控制。
高性能激光驱动辐射源是研究高能量密度物质、利用 kJ PW 激光系统进行对产生和中子产生的研究的重点。在这项工作中,我们提出了一种高效方法,在直接激光加速 (DLA) 电子与几毫米厚的高 Z 转换器相互作用时产生超高通量、高能轫致辐射。在中等相对论强度的亚皮秒激光脉冲与用纳秒激光脉冲辐照低密度聚合物泡沫获得的近临界密度长尺度等离子体相互作用时,产生了能量高达 100 MeV 的直接激光加速电子定向束。在实验中,观察到了通过光核反应产生的钽同位素,阈值能量高于 40 MeV。使用 Geant4 Monte Carlo 程序,以测量的电子能量和角分布作为输入参数,表征了从 180 Ta 到 175 Ta 的同位素记录产量的轫致辐射谱。结果表明,当直接激光加速电子与钽转换器相互作用时,会产生平均光子能量为 18 MeV 的定向轫致辐射,在巨偶极共振(GDR)及以上(≥ 7.5 MeV)的能量范围内每次激光发射会产生 ~2 · 10 11 个光子。这会产生 ~6 × 10 22 sr − 1 · s − 1 的超高光子通量,并且聚焦激光能量转化为高能轫致辐射的转换效率达到创纪录的 2%。