解码宇宙基因蓝图:得益于纳米孔 [5] 测序技术,在太空深处,甚至 DNA 也能揭示其秘密。牛津纳米孔公司的 MinION 等设备配备了纳米材料,可以实时解码遗传信息。通过利用纳米孔,我们可以揭示生命本身的基因蓝图,帮助我们理解从适应微重力的细菌到潜在的外星生命形式的各种生物。用纳米级帆推动梦想:“突破摄星”是一项富有远见的计划,设想一支由石墨烯(一层碳原子)制成的超薄帆(Starchip)推动的纳米飞行器舰队。当被激光能量击中时,这些帆将开始星际旅行,突破传统推进的极限。未来的宇宙风由纳米级线编织而成,可以带我们飞向星空。打造太空服技术的未来:即使在最恶劣的环境中,纳米技术也能增强我们的保护。加固了纳米涂层的太空服不仅仅是一种服装,更是人类能力的延伸。这些涂层具有自清洁功能,可防止有害紫外线辐射,并具有最佳的热管理功能,可确保宇航员在探索未知领域时安全舒适。收集能量并确保纯度:由压电纳米材料驱动的纳米发电机可从太空的振动和温度变化中捕获能量。这些创新机器为传感器、设备和通信系统提供动力,扩大了我们任务的范围。此外,纳米技术还加入了水净化的探索,采用纳米多孔膜和纳米复合材料来确保每一滴水都可以安全饮用——这是长期任务的必需品。
自从the骨脉搏放大的发明是在2018年被诺贝尔物理学奖所认可的,因此可用的激光强度持续增加。Combined with advances in our understanding of the kinetics of relativistic plasma, studies of laser–plasma interactions are entering a new regime where the physics of relativistic plasmas is strongly affected by strong-field quantum electrodynamics (QED) processes, including hard photon emission and electron–positron ( e – e þ ) pair production.繁殖过程和相对论的集体粒子动力学的这种耦合可能会导致新的等离子体物理现象,例如从近吸真空中产生致密的E – e – e – e – e – e – e – e – e s plasma,完全通过QED过程吸收了完全的激光能量,或通过QED过程来吸收Q,或者通过超相对性电子束的停止,可以渗透过毛孔,这可能会渗透到毛孔上,这是一位毛孔的质量,这是一位毛孔的质量,这是一定的质量,这是一定的质量,这是一位毛孔的质量。 光。除了具有根本的兴趣外,至关重要的是,研究这种新的制度是了解下一代超高强度激光器 - 肌电实验及其所产生的应用,例如高能量离子,电子,电子,正电子和光子源,用于基本物理学,医学放射治疗和下一代放射射线照相术的基础物理学研究,以及用于居家园的下一代安全和居民安全和行业。
摘要直接能量沉积(DED)过程利用激光能量融化金属粉末并将其存放在基板上,以生产复杂的金属零件。这项研究被用作修复二手零件的再制造和维修过程,从而减少了制造业中不必要的废物。但是,修复过程中可能会产生缺陷,例如孔隙率或颠簸的形态缺陷。传统上,操作员将使用实验设计(DOE)或仿真方法来了解打印参数对印刷部分的影响。有几个影响因素:激光功率,扫描速度,粉末进料速度和对峙距离。每个DED机器在实践中都有不同的设置,这导致打印结果的一些不确定性。例如,在不同的DED机器中可以改变喷嘴直径和激光类型。因此,假设如果可以实时监控打印过程,则修复可能更有效。在这项研究中,使用结构化的光系统(SLS)来捕获印刷过程的层面信息。SLS系统能够以10 µm的高分辨率进行3D表面扫描。鉴于对零件的初步扫描并允许对每一层信息进行实时观察,要确定需要存放多少材料。一旦找到缺陷,DED机器(混合机器)将更改工具并删除有缺陷的层。修复后,应用无损方法计算机断层扫描(CT)检查其内部特征。在这项研究中,使用316L不锈钢的DED机器来执行维修过程以证明其有效性。实验室构建的SLS系统用于捕获每个层的信息,并为质量评估提供了CT数据。新颖的制造方法可以提高DED维修质量,减少维修时间并促进维修自动化。将来,在制造行业中使用巨大的潜力来修复用过的零件,并避免购买新零件所涉及的额外费用。
薄玻璃切割中的时间空气脉冲效率 Madalin-Stefan Radu、Cristian Sarpe、Elena Ramela Ciobotea、Bastian Zielinski、Radu Constantinescu、Thomas Baumert 和 Camilo Florian* *通讯作者电子邮件:camilo.florian@uni-kassel.de。这是以下文章的预印本:Radu、Madalin-Stefan、Sarpe、Cristian、Ciobotea、Elena Ramela、Zielinski、Bastian、Constantinescu、Radu、Baumert、Thomas 和 Florian、Camilo。 “时间艾里脉冲在薄玻璃切割中的效率” Zeitschrift für Physikalische Chemie,2024 年。最终认证和印刷版本可在线获取:https://doi.org/10.1515/zpch-2024- 0911 超短脉冲激光源是用于微和纳米加工大带隙介电材料的有用工具。这些脉冲的最大优势之一是能够达到高强度峰值,即使在对激光波长透明的材料中也能促进吸收。此外,如果修改脉冲时间分布,能量吸收可以烧蚀直径小、深度大的孔。在这项工作中,我们提出了初步结果,将三种类型的脉冲作为玻璃切割的前体:带宽受限(785 nm 时为 30 fs)、正色散和负色散时间艾里脉冲 (TAP)。所选材料为厚度为 170 μm 的钠钙玻璃,在不同激光能量和扫描速度下,以 1 kHz 的重复率在紧密(50 倍物镜)和松散(20 倍物镜)聚焦条件下进行刻划。激光加工后,使用自制的四点弯曲台通过机械应力对玻璃进行切割。我们分析了三种激光脉冲在表面和横截面上的刻划线质量以及断裂后所需的断裂力。我们报告称,与其他实施的脉冲相比,正 TAP 在玻璃样品上产生了整齐、平整的切割边缘。关键词:玻璃切割;超短脉冲激光;高纵横比结构;激光加工;时间脉冲整形;薄玻璃
美容程序:外观程序被排除在覆盖范围之外。可以改变或改善外观的过程或服务,而不会显着改善生理功能(COC,2018)。双链超声检查:使用声波评估腿部血管的血液流动的无创成像。将B模式扫描仪与内置多普勒功能结合在一起。b模式成像允许精确放置脉冲多普勒样品体积,添加颜色使建立阻塞,湍流以及静脉和动脉流的方向变得更加容易[国家健康研究所(NIH),2023年; Gloviczki,2011年]。内横消融:一种使用射频(RF)或激光能量产生的热量的微创过程,以密封受损的静脉(NIH,2023年)。功能或物理障碍:功能,物理或生理障碍会导致组织或器官的正常功能偏离。这会导致运动,协调行动或进行体育活动的有限,受损或延迟的能力,并在以下一个或多个领域的困难表现出来:物理和运动任务;独立运动;执行基本的生活功能(Medicare,2023)。大隐静脉(GSV):可以在Anklebone前面看到的长静脉。这种静脉沿着腿的内部和大腿(大腿皮肤下方约一半英寸)沿着腹股沟[美国静脉和淋巴结社会(AVLS)中的普通股静脉而空的深静脉。连接:绑住静脉(AVLS,2023)。(美国静脉论坛),2010年]。中度至严重的疼痛:静脉临床严重程度评分(VCSS)描述中度疼痛是每天疼痛或其他不适感会干扰但不会预防常规的日常活动,而严重的疼痛是每天疼痛或不适,这限制了大多数常规日常活动[Vasquez等。重建过程:重构过程是该过程的主要目的是以下内容:
高重复利率高平均值薄盘,平板和基于纤维的激光器由于其稳健的紧凑设计,出色的梁质量和可靠的功率稳定性1-8而变得越来越受欢迎。提供足够的峰值功率来触发各种非线性感兴趣的过程,但这些激光源提供了改善的信号噪声比和快速数据采集时间尺度。这对于打击凝结相光发射过程中的空间充电效应,改善低收益重合测量值或具有自然可降解样品9 - 17的实验至关重要。在这里,我们说明了由200-W泵源(来自Trumpf Scientific的Dira)驱动的超快红外OPCPA(来自Fastlite的Twinstarzz)的性能,以100 kHz的重复速度运行。OPCPA设计旨在满足一套超级光谱技术的一系列标准,从基于HHG的瞬态角度分辨光发射光谱(TR-ARPES)和X射线吸收光谱(TR-XAS)到时光液质式和Raman Spectrared和Raman spectrared和Raman Spectrrasepoppy。在带有固态样品的Tr-Apres中,每个脉冲发射的光电子数量受到空间电荷效应的约束,这限制了驱动脉冲的能量并影响数据统计数据。因此,更高的重复率激光器是有益的。同样,在TR-XAS中,从HHG驱动器18的中红外波长中访问元素X射线吸收边缘的利润。但是,该过程的转化效率低,因此得到了高度重复速率的平均HHG光子通量的帮助。振动光谱法通常需要激光的光谱可调性,以选择性地激发分子振动。在这方面,OPCPA设计的吸引力是可以调整激光光谱带宽,而无需诉诸复杂的脉冲拉伸和压缩,以适应实验的目的。虽然广泛的光谱覆盖范围允许在吸收光谱中访问扩展光谱过渡,但它限制了频率分辨技术中的能量分辨率,例如,在拉曼光谱中。另一方面,当不需要宽光谱覆盖时,减少光谱带宽的能力可以通过将激光能将激光能量浓缩到“有用”带宽中来增加光谱亮度。为了满足不同的实验要求,OPCPA旨在在(1)可调的红外光谱模式之间互换操作,(2)可调的拉曼光谱模式和(3-4)两个
设备描述Greenlight XPS激光系统设计用于使用光的软组织蒸发和凝结。激光系统由控制台组成,该控制台会生成绿色激光和光纤递送设备,该器件将激光从控制台传输到患者。控制台Greenlight XPS控制台是使用ND的二极管泵式激光器:YAG激光增益中等和声学Q开关。主要波长为1064 nm。频率翻倍晶体用于生成532 nm输出梁。准CW脉冲重复率为23.6 kHz。脉冲持续时间约为100 ns。脉冲能量在最大功率(180 W)时约为8 MJ。控制台生成可见的绿色532 nm激光灯。在汽化模式下,功率设置从20 W到由光纤输送设备确定的最大功率。在凝结模式下,电源设置从5 W到40W。控制台具有插头和播放能力,可以自我调整到设施的电源电压,从而消除了操作设施的电气修改的需求。控制台包括内部冷却机制,确保没有外部水连接的安全工作温度。激光能量排放和控制台状态变化通过外科医生控制的,颜色编码的脚踏开关或控制台触摸屏功能激活。纤维生物绿灯XPS控制台配备了Fiberlife TM功能。纤维生物特征连续监视纤维尖端的温度,并在纤维太热时暂时停止激光发射。在大多数情况下,如果组织或蒸气气泡积聚在尖端上或纤维加热过多,则将防止对纤维损坏。在大多数情况下,激光将立即重新打开,并且过程继续而不会中断。将有明显的眨眼。如果连续激活纤维生物特征,则蒸发效率将大大降低。在这种情况下,应更换纤维。控制台将自动检测到此情况,将激光器放置在待机模式下,并显示一条消息。如果激光在膀胱镜内时意外发射,则纤维生物功能将停止激光发射。通常,这将防止对膀胱镜的严重损害。可能仍会发生一些金属的变色,这可能会增加腐蚀的可能性。蒸发绿灯XPS控制台使用光选择性汽化来切除软组织。发出的532 nm绿色激光被红细胞中的羟象球蛋白强烈吸收。吸收激光光能会导致热的产生,从而破裂细胞,有效地蒸发靶组织。此外,热量可以使切除组织附近的血管凝结,从而有清晰的手术场。如果发生出血,控制台也具有脉冲凝血特征。