由于本报告篇幅有限,因此假设读者对将激光器稳定到参考腔体领域有一定的了解。对于不熟悉该领域的人来说,Hamilton 的评论文章 [1] 是一个很好的起点。虽然提高激光器的被动稳定性很有用,但只能将激光线宽减小到一定程度。为了取得进一步进展,需要进行主动稳定。主动稳定的先决条件是鉴频器。可以使用分子吸收或参考腔体。参考腔体有两个优点,首先,谐振梳允许访问光谱中的任何位置。此外,控制信号的信噪比可以几乎无限制地增加,而不会因功率而使谐振变宽。在实现这种类型的激光稳定之前,激光源必须以单一的空间和时间模式运行。还假设有足够带宽的致动器来涵盖激光器的固有噪声。这些致动器既可以作用于激光腔本身(压电安装镜、腔内布鲁斯特板),也可以作用于腔外的光(声光调制器 -AOM、电光调制器 -EOM)。20 世纪 80 年代,出现了许多技术发展,使得构建 1 赫兹激光器成为可能。使用参考腔的主要问题之一是热长度变化。
钙钛矿量子点 (QD) 是溶液处理激光器所关注的焦点;然而,它们的俄歇寿命较短,限制了激光操作主要在飞秒时间范围内进行,在纳秒范围内实现光学增益阈值的光激发水平比在飞秒范围内高出两个数量级。本文作者报告了 QD 超晶格,其中增益介质促进激子离域以减少俄歇复合,并且结构的宏观尺寸提供激光所需的光学反馈。作者开发了一种自组装策略,该策略依赖于钠——一种钝化 QD 表面并诱导自组装以形成有序三维立方结构的组装导向器。考虑 QD 之间吸引力的密度泛函理论模型可以解释自组装和超晶格的形成。与传统的有机配体钝化量子点相比,钠具有更高的吸引力,最终导致微米级结构和反馈所需的光学刻面的形成。同时,新配体使点间距离减小,增强了量子点之间的激子离域,动态红移光致发光就是明证。这些结构充当激光腔和增益介质,实现阈值为 25 μ J cm –2 的纳秒级持续激光。
侧泵纤维组合仪在纤维激光设计方面具有多种优势,包括分布式泵的吸收,减少热负荷以及提高的柔韧性和可靠性。这些好处对于在MID-IR波长范围内和基于软玻璃光纤的所有纤维激光器和放大器尤为重要。然而,由于泵送二氧化硅纤维和信号引导氟化物纤维的热性质显着差异,常规制造方法面临局限性。为了应对这些挑战,这项工作引入了无融合侧面涂层(D形)基于纤维的泵组合剂的设计,其中包括多模二氧化硅和基于双层氟化物的纤维。结果表明,在主动热控制下,在8小时的连续运行中,在980 nm波长下,稳定的耦合效率超过80%。发达的泵组合仪也已成功整合到线性ER掺杂的纤维激光腔中,显示出2731或2781-nm的中心波长连续生成,输出功率为0.87 w。总体而言,这种创新方法总体而言,这种创新的方法呈现出一种简单,可重复的和可重复的泵组合式的固定效果,可启用型号的玻璃纤维,以启用型号的玻璃技术,并配合了玻璃的效果,并配置了型号的玻璃纤维构成型构成型号的效果。具有独特的构图。
芯片尺度多模光力系统具有相对于单模对应物的传感,计量和量子技术具有独特的好处。插槽模式光力晶体可实现单个光学腔的侧带分辨率和两个微波频率机械模式的大型光学机械耦合。仍然,以前的实现仅限于纳米束几何形状,在超高温度下,其有效的量子合作受到其低热电导率的限制。在这项工作中,我们设计和实验表明了二维机械 - 光学机械(MOM)平台,该平台可分散地构造出缓慢的光子引导的光子光子 - 晶波导模式和两个慢速〜7 GHz语音电线模式在物理上不同区域中定位于物理不同的区域。我们首先在长波导部分中展示了光学机械相互作用,揭示低于800 m/s的声学群速度,然后转到具有量身定制的机械频率差的模式差距绝热异质结构腔。通过光力光谱法,我们证明了光学质量因子Q〜10 5,真空磁力耦合速率,G o /2π,1.5 MHz为1.5 MHz,以及除了单模图片以外的动态反作用效应。在较大的功率和足够的激光腔内失调时,我们证明了涉及单个机械模式的再生光学振荡振荡,通过调制输入激光驱动器以其频率差的调制,将两种机械模式扩展到两种机械模式。这项工作构成了对工程MOM系统的重要进步,该系统几乎是退化的机械模式,这是混合多部分量子系统的一部分。
早在1959年,理查德·费曼在题为“底部有足够的空间”的演讲中就提到了层状材料的概念。[1] 然而直到几十年后的今天,我们似乎才通过坚持不懈的努力,对二维材料这个神秘的物种有了更清晰的认识。[2] 对于具有纳米结构的二维材料,在平面上确定传热和电荷时会出现独特的物理奇异性,这使得它们引起了从超快光子学[3–9]电子/光电子器件[10–22]高性能传感器[23–30]生物医学[31–42]到光调制[43–51]等领域的广泛关注。 在过去的几年中,二维材料的整体格局不仅得到了极大的扩展,而且在其开发和应用方面也得到了很大的创新。 其中最引人注目的应用是非线性光学,它掀起了激光创新的狂潮。在众多现有的超短脉冲产生技术中,基于可饱和吸收体(SA)的被动锁模光纤激光器(MLFL)由于具有光束质量好、结构紧凑、成本低廉、兼容性好等优点,成为实现超短脉冲最有效的途径之一。虽然可饱和吸收体的发展经历了染料、半导体可饱和吸收镜(SESAM)等,但自从石墨烯材料的成功制备和应用以来,在光纤激光器中掀起了基于二维材料的可饱和吸收体制备研究的热潮。由于二维材料的光学非线性,基于二维材料的可饱和吸收体可以周期性地调制激光腔内环流光场,引起大量纵模发生相位振荡,从而在时间域上形成有规律的短脉冲串。非线性吸收机理主要由泡利不相容原理引起,使得材料在强光作用下,当有大量电子处于上激发态时,瞬间吸收较小。自石墨烯问世以来,更多的二维材料被认可并在激光领域得到应用。到目前为止,研究热点主要集中在几种代表性材料或与它们相关的一些异质结材料上,包括1)石墨烯;2)拓扑绝缘体(TIs);3)黑磷
摘要 本文研究了单片二极管泵浦掺铊光纤激光器,用作 Ho-YAG 系统的泵浦源。通过优化掺杂光纤长度和腔体参数,腔体设计可实现高光-光效率和对放大自发辐射 (ASE) 引起的寄生振荡的稳定性。通过实验,我们已演示了 1907.7 nm 光纤激光器,其输出功率为 79 W,来自 10/130 μm 掺铊双包层光纤,同时具有高亮度和辐射密度。激光腔的斜率效率约为 55%,ASE 抑制 > 40 dB,近衍射极限光束质量为 M 2 ~1.07。关键词:掺铥光纤激光器,中红外激光器,寄生振荡 1.引言 与体晶体替代品相比,光纤激光器具有独特的紧凑、更可靠、坚固、高效、功率可扩展和高亮度光源[1–4]。掺铥光纤激光器 (TDFL) 具有在 1.8-2.1 μm 范围内发射的宽增益光谱,有利于从工业、遥感、医疗到国防等新兴领域的许多应用。特别是,与 1 μm 替代品相比,2 μm 激光源具有更少的大气散射畸变和更低的热晕,有利于远程激光雷达、自由空间光通信和定向能系统 [5]。此外,在材料加工(切割、焊接、钻孔)行业,虽然 1 μm 激光器经常用于金属加工,但 2 μm 激光器具有明显更高的吸收峰,可以更有效地加工塑料和玻璃材料等非金属 [6]。类似地,红外和中红外区附近的强水吸收峰使其能够在医疗应用中使用 1.9-2.1 μm 激光源,特别是在精确组织手术和碎石术中 [7-8]。另一方面,1.9 μm 左右的高亮度 Tm 掺杂光纤激光器 (TDFL) 是固态激光系统 (如 Ho-YAG) 的优异泵浦源,可实现高量子效率,可用于 TDFL 的带内和芯泵浦,并有助于参数频率转换为中红外和 THz 区 [9-11]。得益于商用发射波长为 ~790 nm 的半导体激光二极管 (LD)、多包层光纤技术和交叉弛豫带来的高量子效率的进步,大量发射波长为 ~2 μm 的高功率 Tm 掺杂光纤激光器和放大器已成功演示 [12]。在这种方法中,MOPA 系统采用芯径高达 25 μm 的大模面积 (LMA) 光纤,旨在实现约 2.05 μm 处 1kW 以上的输出功率 [13]。然而,与多级放大器系统相比,高功率振荡器可最大限度地降低成本和复杂性,从而提供更高的稳定性、稳健性和精确控制。据报道,工作在2 μm以下的直接二极管泵浦TDF振荡器的功率水平和波长均有所增加,例如在2050 nm处为170 W和300 W [14-15],在1967 nm处为278 W [16],在1950 nm处为185 W [17]。
在此处给定文章文章:光子学:现代通信中的光学电子学Amnon Yariv和Pochi Albert Yeh,2006年1。电磁场和波2。射线和光束3。介电波导和光纤4。光谐振器5。辐射和原子系统的相互作用6。激光振荡和某些特定激光系统的理论7。纤维中的色散和极化模式分散8。非线性光学9。电磁和AO调制器10。光学检测和第11代中的噪声。检测光辐射12。周期性结构13。波导耦合...在先前的研究中,我提出了一个相干耦合光学信号的腔电器调节器的量子模型。Mingshan Li,工程,物理,2014年,现代光纤通信系统中的传输带宽依赖于光信号发射器的调制带宽和光子组件的计算速度。开发了一种极端模式转换器,这是一种紧凑的平面光子结构,有效地将氮化硅高指数单模型波导耦合到近表面 - 表面纳米的高斯束,其腰部为≈160µm,对应于模态面积的增加> 105。半导体激光腔中的光学非线性可以被利用以表征激光辐射的性能或执行频率转换操作。例如,非线性光学效应可用于减速光。慢灯一直是一个跨学科的话题和快速增长的领域。放慢速度和控制光的能力在各种应用中可能很有用。在标准光纤通信系统中遇到的许多光子设备也用于量子信息和通信系统,例如光放大器和开关。我们提出了用于建筑室温的设计和实验性工作,连续波(CW)激光器的腔体将光限制在体积≤(λ/N)3。Amnon Yariv和Pochi Yeh的第六版Photonics已进行了广泛的修订,以跟上最近的发展。现在,它更多地关注光学通信,将材料整合到生成和操纵光辐射以及设计光子组件以进行信息传输上。本文还提供了比上一版更广泛的理论基础和更详细的数学解释。此更新的版本涵盖了光通信和电子产品中主要光子组件的基本物理和原理。这些包括光谐振器,各种激光,波导,光纤,光栅和光子晶体。此外,它探讨了光学网络中光束的传输,调节,扩增和检测以及纤维中的非线性光学效应。本书具有电磁理论,麦克斯韦方程和电磁波传播的背景。第六版的光子学也是实践工程师和科学家的有用参考。整个过程中都包含许多示例,使其成为光子学,光电学或光学通信的高级本科和研究生课程的理想资源。第六版中的新材料包括诸如Stokes参数和Poincar Sphere,Fermat的原理,矩阵配方,分散和耦合共振器光学波导等主题。纤维中的非线性光学效应包括自相度调制,跨相调制,SBS,SRS,四波混合和光谱反转。此外,在波导电气马赫德调制器中观察到电吸收。光子晶体表现出Bloch波,光子带和带隙,以及周期性分层介质和纤维Bragg光栅。
US 11,016,119 B1 1 2 MONOLITHIC ATOMIC FORCE In view of the above problems , we proposed a novel class MICROSCOPY ACTIVE OPTICAL PROBE of probes for atomic force microscopy ( AFM active optical probe - AAOP ) by integrating a laser source and a photo CROSS REFERENCE TO RELATED detector monolithically into the AFM probe [ Actoprobe APPLICATIONS 5 2015 ] .AAOPS被设计为在召开AFM中使用,以通过包括本申请的索赔优先级和优先级来增强其功能,以上提到的仪器(NSOM,TERS,TERS,混合访问应用程序编号62 / 415,097于2016年10月31日提交,AFM)。 这些独特的光学探针的设计是根据整个披露,通过形式的传统AFM探针和参考。 10添加,同时提供有关纳米级样品的Opti cal特性的信息。 本发明概念的AAOP领域是基于单次结合二极管激光器和AFM探针的基础。 AAOP被设计为本发明与AFM显微镜和空腔探针有关的,即,AFM探针尖端是激光接近 - 场光学显微镜探针的一部分,尤其是15个腔。 AAOP由基于GAA的悬臂组成,其单片AFM活动光学探针能够执行安装在常规SI芯片上的AFM探针。 传统的AFM测量和光学成像,尽管在技术上可行,但纳米级的GAAS / SI杂交和光谱法。 硅,im和GAAS。 (DBR)镜子。62 / 415,097于2016年10月31日提交,AFM)。这些独特的光学探针的设计是根据整个披露,通过形式的传统AFM探针和参考。10添加,同时提供有关纳米级样品的Opti cal特性的信息。本发明概念的AAOP领域是基于单次结合二极管激光器和AFM探针的基础。AAOP被设计为本发明与AFM显微镜和空腔探针有关的,即,AFM探针尖端是激光接近 - 场光学显微镜探针的一部分,尤其是15个腔。AAOP由基于GAA的悬臂组成,其单片AFM活动光学探针能够执行安装在常规SI芯片上的AFM探针。传统的AFM测量和光学成像,尽管在技术上可行,但纳米级的GAAS / SI杂交和光谱法。硅,im和GAAS。(DBR)镜子。提出了严重的问题,可能会影响由于具有不同热膨胀常数的材料的粘结背景而产生的应变,即纳米级的光学表征当前需要NSOM(发明光学显微镜的接近 - 现场扫描摘要),TERS(TIP-增强的Raman Spectros副本)或Hybrid AFM(其中包括专门的FAR -FAR -FAR -FAR -FIEL -FIELD -FIELD 25本发明的对象都提供新型的光学显微镜)。class of probes for atomic force microscopy ( monolithic Attempts at integrating atomic force microscopy and AFM active optical probeML AAOP ) by integrating a optical techniques have already been made and several laser source and a photodetector monolithically into the products based on these schemes have found their way into AFM probe , based entirely on GaAs or similar lasing the market .可商购的,具有Inte-30材料的AFM尖端,从而避免使用有害的GAAS / SI杂化片状波导(空心尖端)。带有外部激光源[Celebrano 2009]。本发明构成了一种制造成本方法的方法,其固有的局限性就整体,集成的光学AFM探针而言。可以传递的最广泛的光学分辨率和光功率。用于原子力显微镜的使用的探针被制造得可实现高侧分辨率使用硅技术的接近磁场35的大小。此方法有限作为光学设备制造的基础。相比之下,ML AAOPS是孔需要减少的,因此导致完全由GAAS制造的指数,半导体材料的光电输出减少。具有最终分辨率和检测器功能的近距离显微镜的激光应用可以通过大约50 nm的外延生长来实现,但不适用于光学结构。边缘 - 发射激光二极管,轻度指南和EFFI光谱,由于功率输出较小。40个满足的光电探测器是通过对旨在更好地整合光区域(Epi-层)的活跃的其他方法来制造的,而AFM尖端是用源和AFM尖端制造的,通常涉及将特殊成长的GAAS外部外在过度层层附加到一个预先制动的光源(Edge Expriced semitter,vcse)的顶部(vcse vcse sepge a veriide a cert a py a veriide a cert a c。 AFM Cantilever探针(混合方法)[Bargiel Epi-激光结构的层。GAAS的选择是2006年,Kingsley 2008]或光源45的制造,直接在AFM尖端上直接在AFM尖端上建立的制造技术的基础[Heisig 2000a,Heisig,Heisig 2000b,nology,nology,允许时间和成本 - 有效的制造 - 有效的制造Hoshino Hoshino Hoshino 2008,Hoshino 2009,Hoshino 2009]。在这些情况下,探针的光学。本发明的实践很容易被探测到探针中。成本 - 有效地使它们负担得起,以实现本发明的说明性体现,即Tific社区。是在AFM尖端制造的激光波长[AN 2008]。杂种扩展到替代III -V半导体,例如INP,方法仅显示在研究实验室和GAP,GAP,GAS和GAN中起作用,以扩大可用的波长,很难想象如何将光学探针从UV到可见的和Mid -Midrared制造50个覆盖率。此外,在激光腔中常用的VCSEL由两种分布式bragg反射器定义,这种方法的光输出功率受到限制。第一个激光镜是标准的第一阶 - 另外,单个集成的光电视也具有dbr光栅(周期 / 2ng,其中h。< / div>光电探测器-55和NEF是仅GAAS波的有效折射率[AN 2008]不能解决指导的困难),该指标可确保将光源对齐在AFM尖端上的激光单个纵向模式,并进行要求。第二激光镜是降低检测器尺寸的第二个订单DBR,以实现位于悬臂末端的空间光栅(周期为n / neft)。IT分辨率直接与将用作用作折叠镜的要求矛盾,该镜子将光线(以获得高60 AVITY激光模式获得的最大可能的检测区域)垂直地进入Nansoscale上光学上的灵敏度水平的AFM尖端中。具有集成的LED光源和Pho-Ridge波导的AFM尖端顶部的特殊生长的GAA外延层层。尖端探头,光源(GAAS LED)被简单地粘在65本身上,是扮演悬臂芯片作用的总内反射棱镜。因此,激光产生的光已证明是todeTector [Sasaki 2000],但是虽然将耦合到GAAS探针的表面模式(锥形光电探测器(锥形光电探测器)中)并转移到尖端顶点。这不足以满足需求 - 输出镜,第三镜,在激光腔中。高功率,单波长操作的精神。GAAS微型 - 棱镜将激光光引导到尖端顶点和