光学主动电信发射器的最新演示表明,硅是固态量子光子平台的引人注目的候选者。尤其是,在常规的热退火后,已在富含碳的硅中显示了称为G中心的缺陷的制造。然而,这些发射器在晶圆尺度上的高收益受控制造仍然需要鉴定合适的热力学途径,从而在离子植入后激活其激活。在这里,我们证明了纳秒脉冲激光退火时高纯硅底物中G中心的激活。该提出的方法通过供应短的非平稳脉冲来实现G中心的非侵入性,局部激活,从而克服了与发射器的结构性亚元能力相关的常规快速热退火的局限性。有限元的分析突出了该技术的强大非平稳性,提供了与常规更长的热处理相对于常规的较长热处理的根本不同的缺陷工程能力,为嵌入在集成光子电路和波导的集成光子电路和波导中的发射器的直接和受控制造铺平了道路。
Sige合金数十年来引起了很多兴趣,尤其是在微电子行业中。如今,它们已在许多设备中使用。的确,由于GE [1]中的较高的孔迁移率和相对较小的晶格参数差异,因此它们与硅设备的兼容性使得能够设计出诸如应变,载流子迁移率和带盖之类的特性。一个人可以使用sige:b源和排水量来压缩PMOS通道,从而改善其电气性能[2]。但是,设备的连续微型化需要形成越来越浅的源/排水(S/d)连接,但具有高掺杂剂激活。因此,退火过程时间尺度变短且较短[3,4]。纳秒激光退火(NLA)可以达到SI [5-7]或GE [8,9]中的较高掺杂剂的激活。紫外线NLA(UV-NLA)也可以用于3D整合,因为其短脉冲持续时间及其短波长导致表面附近的高退化温度,同时将嵌入式层保持在较低的温度下[10-13]。
µs UV-LA 优势: 单步激活深 p/n 结,载流子分布与植入后 SIMS 分布相匹配 适用于最大 5 µm 的各种分布。 浅层紫外线吸收 与薄晶圆兼容
4.3.2 重叠................................................................................................ 30