太空发展局(SDA)已采取措施开发激光通信技术,但尚未在太空中充分证明它。SDA计划将每2年推出卫星和相关系统的迭代,称为批量。SDA的示范批次(以0或T0的形式引用)面临着发展挑战和延误,并且尚未完全证明其预期的能力。例如,SDA计划在2022年推出第一个T0卫星,但于2023年和2024年推出。此外,这组最初的卫星尚未完全证明太空中的激光通信技术。特别是,截至2024年12月,SDA报告说,其T0中的四个主要承包商之一表明了八个计划的激光通信功能中的三个,而另一个承包商则证明了八个功能之一。其余两个承包商尚未获得任何计划的能力。
太空发展局(SDA)已采取措施开发激光通信技术,但尚未在太空中充分证明它。SDA计划将每2年推出卫星和相关系统的迭代,称为批量。SDA的示范批次(以0或T0的形式引用)面临着发展挑战和延误,并且尚未完全证明其预期的能力。例如,SDA计划在2022年推出第一个T0卫星,但于2023年和2024年推出。此外,这组最初的卫星尚未完全证明太空中的激光通信技术。特别是,截至2024年12月,SDA报告说,其T0中的四个主要承包商之一表明了八个计划的激光通信功能中的三个,而另一个承包商则证明了八个功能之一。其余两个承包商尚未获得任何计划的能力。
除了 LCRD 之外,ILLUMA-T 的前身还包括 2022 TeraByte 红外传输系统,该系统目前正在低地球轨道上的一颗小型立方体卫星上测试激光通信;月球激光通信演示,在 2014 年的月球大气和尘埃环境探测器任务期间将数据从月球轨道传输到地球并返回;以及 2017 年的激光通信科学光学有效载荷,它展示了与无线电信号相比,激光通信如何加速地球和太空之间的信息流。
《IEEE 量子电子学选题期刊》(JSTQE)邀请自由空间激光通信进展方面的论文投稿。自由空间激光通信这一新兴领域利用庞大的地面光纤行业以及最近大量廉价太空发射,成为解决太空星座交叉链路、高带宽数据下行链路和载人航天通信需求的现实解决方案。随着全球多个组织继续在该领域进行技术开发和系统设计创新,lasercom 有望在不久的将来继续彻底改变太空通信领域,为通信瓶颈以及系统尺寸、重量和功率限制提供独特的解决方案。《IEEE 量子电子学选题期刊》邀请自由空间激光通信领域的论文投稿。本期 JSTQE 旨在重点介绍开发尖端 lasercom 技术的最新进展和趋势。感兴趣的领域包括(但不限于):
在 CACI International Inc (NYSE: CACI),我们拥有 23,000 名才华横溢、充满活力的员工,他们始终保持警惕,提供独特的专业知识和差异化技术,以应对客户在国家安全和政府现代化方面面临的最大挑战。我们是一家品格优良、不断创新、长期追求卓越的公司。我们的文化推动着我们的成功,并让我们成为《财富》全球最受赞赏的公司。CACI 是《财富》1000 强企业、罗素 1000 指数和标准普尔中型股 400 指数的成员。欲了解更多信息,请访问 caci.com。
卫星由于要求的有效载荷的要求而产生的数据比以往任何时候都要多,尽管往往地球(DTE)的数据速率没有经历相同的增长。紧凑的激光通信终端是一项有前途的技术,它将增加带宽(10 GBIT+),并为传输较大的数据量铺平道路,这将增加小型和立方体在空间数据中作为服务产品的相关性。Orbit示威者的目标是针对1000公里的范围为1 GBIT/s的下行链路数据速率。使用1545nm的下行链路波长,而1590nm则用于接地站信标。PRB23序列将从轨内部末端传输到荷兰的地面站。在轨内实验中,将尝试从其他机上有效载荷中获取有效载荷数据,并将这些数据转发到地球上。这将为可能的未来增强功能提供宝贵的见解。
联合全域指挥与控制 (JADC2) 是由国防部开发的概念,旨在将各军种的传感器连接到一个由人工智能驱动的统一网络中。JADC2 的一个关键目标是将各种传感器收集的数据近乎实时地连接到所有五个作战域(陆地、海洋、空中、太空和网络空间)的射手。为了实现这一愿景,五角大楼已责成太空发展局 (SDA) 创建一个称为“传输层”的全球通信网络,该网络将在低地球轨道 (LEO) 卫星之间传递信息,从而为 JADC2 创建近乎实时的通信网络。为了实现 JADC2 愿景,SDA 必须创建一个近乎实时的通信网络,该网络具有高带宽、以光速移动且难以拦截或干扰。这就需要激光通信。
摘要:日本国家信息通信技术研究所 (NICT) 目前正在为立方体卫星开发高性能激光通信终端,旨在为需要从轨道传输大量数据的低地球轨道卫星提供高数据速率通信解决方案。通信系统的一个关键部分是高功率光放大器,它能够为传输的信号提供足够的增益,以便能够在对立方体卫星平台的能量和功率影响最小的情况下关闭其对应接收器上的链路。本文介绍了与立方体卫星外形尺寸兼容的小型化 2-W 空间级 2 级掺铒光纤放大器 (EDFA) 的开发,据作者所知,它显示了空间合格 EDFA 的最佳功率与尺寸比。介绍了在实际条件下以及完整的空间鉴定和测试下的性能结果,证明该模块可以支持短时间低地球轨道地面下行链路以及长时间卫星间链路。
项目委员会:Abhijit Biswas,喷气推进实验室。(美国);Don M. Boroson,麻省理工学院林肯实验室。(美国);Kerri L. Cahoy,麻省理工学院(美国);Donald M. Cornwell Jr.,亚马逊公司(美国);Baris I. Erkmen,Hedron(美国);Harald Hauschildt,欧洲空间研究与技术中心。(荷兰);Frank F. Heine,Tesat-Spacecom GmbH & Co. KG(德国);William S. Rabinovich,美国。海军研究实验室。(美国);Todd S. Rose,航空航天公司(美国);Julie Smith,空军研究实验室。(美国); Sarah A. Tedder,NASA 格伦研究中心。(美国);Linda M. Thomas,美国海军研究实验室。(美国);Morio Toyoshima,国家信息和通信技术研究所(日本)
摘要 —为了满足从小型无人机到大型卫星等多种不同类型平台的多样化需求,并应用于从固定地面链路到一般移动平台等各种场景,并在各种条件和距离内运行,日本国家信息和通信技术研究所 (NICT) 目前正致力于开发一系列多功能微型自由空间激光通信终端。通过为任何给定场景选择适当的终端配置,无需定制即可满足基本操作条件,并且终端的自适应设计可以缩小差距,以实现满足通信要求的最佳解决方案。本文介绍了 NICT 目前在开发该系列激光通信终端方面的努力,并介绍了为验证和测试目的而开发的首批原型。