1977 年,克服了青少年时期的挑战,基于环形激光陀螺仪 (RLG) 的内部导航系统必须成长为成年人,找到工作并谋生。当时尚不清楚 RLG 的职业道路应该专注于军事应用(其之前的大部分研究和资金都针对此类应用)还是蓬勃发展的商用飞机业务。在军事领域,占主导地位的机械陀螺仪已经达到了一定的尺寸、成本、性能和价格点,这导致霍尼韦尔针对新技术的营销策略变得困难。克服空军和海军采购过程的惯性(双关语)及其严格而多样化的性能要求,对年轻的霍尼韦尔部门提出了挑战,该部门急于用这条新产品线证明自己的勇气。为了向上发展,年轻人需要一个合作伙伴,最好是一个实力雄厚、雄心勃勃、财力雄厚的合作伙伴,以建立企业联姻,提升 RLG 的地位。
值得注意的是,过去 50 年来,大多数飞机技术都处于停滞状态。例如,喷气发动机依赖于 20 世纪 30 年代末开发的燃气涡轮机;飞机结构已达到稳定和饱和的水平。然而,仪表系统和航空电子设备仍在取得重大进展,主要目标是减少飞行员的工作量,并将飞行安全性提高到非常高的水平。使用半导体 VLSI 技术的另一个优势是显著减小了设备的尺寸和重量。驾驶舱不再像传统的老式钟表式仪表;另一方面,它们现在看起来更像一个计算机工作站。本书强调介绍当代的发展,而不是过多地关注过时的系统。例如,姿态测量传统上使用机械陀螺仪进行,而现代飞机中机械陀螺仪现在几乎已被环形激光或光纤陀螺仪取代。我们介绍了使用激光陀螺仪和光纤陀螺仪的捷联式角度传感器的最新进展。同样,使用微处理器技术的大气数据计算机已经取代了老式的全气动传统指示器,如空速指示器、高度计、垂直速度指示器,这些指示器存在某些严重的局限性。
值得注意的是,过去 50 年来,大多数飞机技术都处于停滞状态。例如,喷气发动机依赖于 20 世纪 30 年代末开发的燃气涡轮机;飞机结构已达到稳定和饱和的水平。然而,仪表系统和航空电子设备仍在取得重大进展,主要目标是减少飞行员的工作量,并将飞行安全性提高到非常高的水平。使用半导体 VLSI 技术的另一个优势是显著减小了设备的尺寸和重量。驾驶舱不再像传统的老式钟表式仪表;另一方面,它们现在看起来更像一个计算机工作站。本书强调介绍当代的发展,而不是过多地关注过时的系统。例如,姿态测量传统上使用机械陀螺仪进行,而现代飞机中机械陀螺仪现在几乎已被环形激光或光纤陀螺仪取代。我们介绍了使用激光陀螺仪和光纤陀螺仪的捷联式角度传感器的最新进展。同样,使用微处理器技术的大气数据计算机已经取代了老式的全气动传统指示器,如空速指示器、高度计、垂直速度指示器,这些指示器存在某些严重的局限性。
值得注意的是,过去 50 年来,大多数飞机技术都处于停滞状态。例如,喷气发动机依赖于 20 世纪 30 年代末开发的燃气涡轮机;飞机结构已达到稳定和饱和的水平。然而,仪表系统和航空电子设备仍在取得重大进展,主要目标是减少飞行员的工作量,并将飞行安全性提高到非常高的水平。使用半导体 VLSI 技术的另一个优势是显著减小了设备的尺寸和重量。驾驶舱不再像传统的老式钟表式仪表;另一方面,它们现在看起来更像一个计算机工作站。本书强调介绍当代的发展,而不是过多地关注过时的系统。例如,姿态测量传统上使用机械陀螺仪进行,而现代飞机中机械陀螺仪现在几乎已被环形激光或光纤陀螺仪取代。我们介绍了使用激光陀螺仪和光纤陀螺仪的捷联式角度传感器的最新进展。同样,使用微处理器技术的大气数据计算机已经取代了老式的全气动传统指示器,如空速指示器、高度计、垂直速度指示器,这些指示器存在某些严重的局限性。
值得注意的是,过去 50 年来,大多数飞机技术都处于停滞状态。例如,喷气发动机依赖于 20 世纪 30 年代末开发的燃气涡轮机;飞机结构已达到稳定和饱和的水平。然而,仪表系统和航空电子设备仍在取得重大进展,主要目标是减少飞行员的工作量,并将飞行安全性提高到非常高的水平。使用半导体 VLSI 技术的另一个优势是显著减小了设备的尺寸和重量。驾驶舱不再像传统的老式钟表式仪表;另一方面,它们现在看起来更像一个计算机工作站。本书强调介绍当代的发展,而不是过多地关注过时的系统。例如,姿态测量传统上使用机械陀螺仪进行,而现代飞机中机械陀螺仪现在几乎已被环形激光或光纤陀螺仪取代。我们介绍了使用激光陀螺仪和光纤陀螺仪的捷联式角度传感器的最新进展。同样,使用微处理器技术的大气数据计算机已经取代了老式的全气动传统指示器,如空速指示器、高度计、垂直速度指示器,这些指示器存在某些严重的局限性。