表 1. 参数 最小值典型值最大值 单位 测试条件/注释 电容输入 转换输入范围 ±4.096 pF 1 工厂校准 积分非线性 (INL) 2 ±0.01 % FSR 无失码 2 24 位转换时间 ≥ 62 ms 分辨率,pp 16.5 位转换时间 = 62 ms,见表 5 有效分辨率 19 位转换时间 = 62 ms,见表 5 输出噪声,rms 2 aF/ √ Hz 见表 5 绝对误差 3 ±4 fF 1 25°C,V DD = 5 V,失调校准后 失调误差 2,4 32 aF 1 系统失调校准后,不包括噪声影响 4 系统失调校准范围 2 ±1 pF 失调漂移与温度的关系 –1 aF/°C 增益误差 5 0.02 0.08 % FS 25°C, V DD = 5 V 增益漂移与温度的关系 2 –28 –26 –24 ppm of FS/°C 允许的接地电容 2 60 pF 参见图9和图10 电源抑制比 0.3 1 fF/V 常模抑制比 65 dB 50 Hz ± 1%, 转换时间 = 62 ms 55 dB 60 Hz ± 1%, 转换时间 = 62 ms 通道间隔离 70 dB 仅限AD7746 CAPDAC全范围 17 21 pF 分辨率 6 164 fF 7位 CAPDAC 漂移与温度的关系 2 24 26 28 ppm of FS/°C 激励频率 32 kHz 电容两端电压 ±V DD /8 V 可通过数字接口配置 ±V DD /4 V ±V DD × 3/8 V ±V DD /2 V 电容上的平均直流电压
表 1. 参数 最小值典型值最大值 单位 测试条件/注释 电容输入 转换输入范围 ±4.096 pF 1 工厂校准 积分非线性 (INL) 2 ±0.01 % FSR 无失码 2 24 位转换时间 ≥ 62 ms 分辨率,pp 16.5 位转换时间 = 62 ms,见表 5 有效分辨率 19 位转换时间 = 62 ms,见表 5 输出噪声,rms 2 aF/ √ Hz 见表 5 绝对误差 3 ±4 fF 1 25°C,V DD = 5 V,失调校准后 失调误差 2,4 32 aF 1 系统失调校准后,不包括噪声影响 4 系统失调校准范围 2 ±1 pF 失调漂移与温度的关系 –1 aF/°C 增益误差 5 0.02 0.08 % FS 25°C, V DD = 5 V 增益漂移与温度的关系 2 –28 –26 –24 ppm of FS/°C 允许的接地电容 2 60 pF 参见图9和图10 电源抑制比 0.3 1 fF/V 常模抑制比 65 dB 50 Hz ± 1%, 转换时间 = 62 ms 55 dB 60 Hz ± 1%, 转换时间 = 62 ms 通道间隔离 70 dB 仅限AD7746 CAPDAC全范围 17 21 pF 分辨率 6 164 fF 7位 CAPDAC 漂移与温度的关系 2 24 26 28 ppm of FS/°C 激励频率 32 kHz 电容两端电压 ±V DD /8 V 可通过数字接口配置 ±V DD /4 V ±V DD × 3/8 V ±V DD /2 V 电容上的平均直流电压
输入通道数:2 配置:可通过软件选择同步机(3 线)或旋转变压器(4 线) 分辨率:16 位 精度:± 2.6 角分 频率:50 Hz 至 4.0 kHz 信号输入:2-28 Vrms. 输入阻抗:478 kΩ ±10 kΩ 加速度:300 rps/s @ 60 Hz, 450 rps/s @ 400 Hz 1000 rps/s @ 4000 Hz 阶跃响应:800 mS - 179° @ 60 Hz, 150 mS - 179° @ 2500 Hz 更新率:最大更新率等于激励频率。参考输出通道数:2(每个输入通道一个)输出电压:28 Vrms,最高 1.2 VA。电压分辨率 1.2 mVrms 参考频率 50 Hz 至 4 kHz (+/-1%) 同步器/分解器输出通道数 2(同步器/分解器输入和模拟输出的总数限制为 2。)配置同步器(3 线)或分解器(4 线)分辨率 16 位输出电压 28 Vrms 高达 1.2 VA。输出精度 ±4 弧分 通用规格 工作温度 经测试 -40 °C 至 +85 °C(在非 GigE Cubes 中,如果工作温度高于 60 °C,则需要 DNA-FAN。) 振动 IEC 60068-2-6 IEC 60068-2-64 5 g,10-500 Hz,正弦波 5 g(rms),10-500 Hz,宽带随机 冲击 IEC 60068-2-27 100 g,3 ms 半正弦波,6 个方向 18 次冲击 30 g,11 ms 半正弦波,6 个方向 18 次冲击 湿度 5 至 95%,无凝结 海拔 120,000 英尺 MTBF 275,000 小时 功耗 空闲时 4.5 瓦,满载时最高 10 瓦 订购 指导
摘要 建筑外围护结构中的空气泄漏是建筑物供暖和制冷需求的很大一部分原因。因此,快速可靠地检测泄漏对于提高能源效率至关重要。本文介绍了一种从外部确定建筑外围护结构中空气泄漏的新方法,将锁定热成像和鼓风机门系统的热激发相结合。鼓风机在建筑物内产生周期性的过压,导致外表面(立面)泄漏附近的表面温度发生周期性变化。通过以已知频率激发的温度变化,以激发频率对热图像的时间序列进行傅里叶变换,可得到突出显示泄漏影响区域的幅度和相位图像。红外摄像机的周期性激发和检测称为锁定热成像,广泛用于表征半导体器件和无损检测。激发通常通过光、电或机械能量输入实现。在本研究中,在 75 Pa 压差下,以三个 40 秒的激励周期对外墙进行了测量,总测量时间仅为 2 分钟。在光照、风和云量变化很大的条件下,空气温差为 5 至 7 K 时进行了测量。与最先进的差分红外热成像测量相比,测量结果显示检测质量更高,受环境条件变化的影响更小。该方法仅在激励频率下突出显示振幅图像的变化,从而过滤掉由环境影响引起的变化。因此,低至几开尔文的温差就足够了,可以从外部检查大型外墙。该振幅图像已经比用差分热成像创建的图像更清晰。使用标量积对振幅进行相位加权,可以进一步减少图像中不需要的伪影。关键词 锁定、热成像、鼓风机门、气密性、泄漏检测、建筑围护结构、建筑节能 1 引言 不受控制的气流通过建筑围护结构,造成 30-50% 的建筑物供暖能耗 (Kalamees,2007 年;Jokisalo 等人,2009 年;Jones 等人,2015 年)。因此,气密性评估,特别是快速可靠地定位泄漏,对于减少供暖能源需求至关重要。风扇加压法或鼓风机门测试在多项国际标准 (Deutsches Institut für Normung e. V.,2018 年;ASTM,2019 年) 中有规定,用于测量建筑物的整体气密性。然而,泄漏定位很麻烦,需要
摘要 建筑外围护结构中的空气泄漏是建筑物供暖和制冷需求的很大一部分原因。因此,快速可靠地检测泄漏对于提高能源效率至关重要。本文介绍了一种从外部确定建筑外围护结构中空气泄漏的新方法,将锁定热成像和鼓风机门系统的热激发相结合。鼓风机在建筑物内产生周期性的过压,导致外表面(立面)泄漏附近的表面温度发生周期性变化。通过以已知频率激发的温度变化,以激发频率对热图像的时间序列进行傅里叶变换,可得到突出显示泄漏影响区域的幅度和相位图像。红外摄像机的周期性激发和检测称为锁定热成像,广泛用于表征半导体器件和无损检测。激发通常通过光、电或机械能量输入实现。在本研究中,在 75 Pa 压差下,以三个 40 秒的激励周期对外墙进行了测量,总测量时间仅为 2 分钟。在光照、风和云量变化很大的条件下,空气温差为 5 至 7 K 时进行了测量。与最先进的差分红外热成像测量相比,测量结果显示检测质量更高,受环境条件变化的影响更小。该方法仅在激励频率下突出显示振幅图像的变化,从而过滤掉由环境影响引起的变化。因此,低至几开尔文的温差就足够了,可以从外部检查大型外墙。该振幅图像已经比用差分热成像创建的图像更清晰。使用标量积对振幅进行相位加权,可以进一步减少图像中不需要的伪影。关键词 锁定、热成像、鼓风机门、气密性、泄漏检测、建筑围护结构、建筑节能 1 引言 不受控制的气流通过建筑围护结构,造成 30-50% 的建筑物供暖能耗 (Kalamees,2007 年;Jokisalo 等人,2009 年;Jones 等人,2015 年)。因此,气密性评估,特别是快速可靠地定位泄漏,对于减少供暖能源需求至关重要。风扇加压法或鼓风机门测试在多项国际标准 (Deutsches Institut für Normung e. V.,2018 年;ASTM,2019 年) 中有规定,用于测量建筑物的整体气密性。然而,泄漏定位很麻烦,需要
一般描述 DNx-AI-256 是高性能双通道同步器/解析器输入和输出板,与 UEI 强大的 Cube、RACKtangle 和 FLATRACK I/O 机箱兼容。256 系列板在功能上与 DNx-AI-255 类似,但为需要它的应用提供了更多的输出驱动。DNx-AI-256 系列也是 LVDT/RVDT 的理想解决方案。该板可以配置为两个输入、两个输出或一个输入和一个输出。该板提供 2 个输入通道,可监控 3 线同步器或 4 线解析器。该板的高精度电路与每个通道独立的 16 位 A/D 转换器相结合,可实现高达 ± 2.6 弧分的测量精度。输入的读取速率最高可达激励频率(最大 10 kHz)。每个通道均提供自己的可编程参考,输出可独立编程,最高可达 19.8 Vrms,频率范围为 50 至 10 kHz,最高可达 2.4 VA。使用外部参考时,DNR-AI-256 可在一个参考周期内自动调整模拟输出,以获得可变幅度和频率参考。DNx-AI-256 还提供两个同步器/解析器/RVDT/LVDT 接口通道,非常适合用于姿态指示器等设备,或作为各种同步器或解析器输入设备的测试源。每个输出均接受独立的参考信号,并提供 16 位输出分辨率。无需外部缓冲,每个通道将以 3.0 VA 驱动高达 19.8 Vrms(总板输出必须小于或等于 5 VA)。可以监控每个输出通道消耗的电流,以确认接线正确,同步器/解析器或 RVDT/LVDT 的线圈符合预期。该板在通道之间以及 I/O 连接和底盘之间提供 350 Vrms 隔离。与所有 PowerDNA/UEILogger I/O 板一样,DNx-AI-256 可在恶劣环境下运行,并已通过 3g 振动、50g 冲击、-40 至 +70 °C 温度和高达 70,000 英尺的高度测试。包含软件,提供全面且易于使用的 API,支持所有流行操作系统,包括 Windows、Linux 和大多数实时操作系统(如 QNX、Intime、VXworks 等)。此外,UEIDAQ 框架(更高级别的 Windows 驱动程序)为使用多种流行 Windows 编程语言创建应用程序的用户以及 LabVIEW 和 MATLAB/Simulink 等数据采集软件包提供全面支持。由于 DNR-AI-256 具有高功率输出,因此应在其旁边的插槽中放置一个风扇装置以防止过热。风扇装置 DNR-FAN-925 包含在 DNR-AI-256 中。