图6。(a)由DY3+离子和无bragg镜子的单个DY3+掺杂的活性层(参考)激活的微腔的光致发光光谱。插图:激发激光的光谱。(b)与没有bragg镜的参考样品相比,微腔的发光强度的入射角依赖性。
图 2. S-QD 样品的 2DES 测量。(a)S-QD 样品在选定的布居时间 t 2 值下纯吸收 2DES 图的演变(图已标准化为 1)。虚线指出了激发激光轮廓覆盖的 1S 电子跃迁的位置。(b)和(c)在对角线(18500, 18500 cm -1 )坐标(圆圈)和非对角线(18900, 17200 cm -1 )坐标(正方形)提取的衰减轨迹与 t 2 的关系。黑色:实验数据;红色:从全局拟合分析获得的拟合轨迹。振荡残基报告在下面板中。(d)和(e)分别对图 (b) 和 (c) 中显示的衰减轨迹进行时间频率变换拍频分析。在拍频 1000 cm -1 处绘制一条灰色虚线,作为视觉引导。
简介研究仪器家族包括使用至少1个激发激光和多达8个荧光收集通道的大粒子细胞仪的集合。COPAS仪器独有的是分析特征,该特征图以图形方式绘制了荧光强度在对象穿过激光时沿着对象长度的变化。可以分析直径高达1.5mm的大物体的物理和荧光特性,并轻轻分配到多孔板或其他收集容器中,以进一步研究或重复使用。COPAS视觉还装备了一个相机,以拍摄流道内部对象的图像。此图像伴随细胞仪数据,可以使用Union Biometrica的FlowPilot软件或其他图像分析工具进行分析。利用机器学习工具来处理COPAS视觉的大量成像和细胞术数据,Filgueiras组创建了它们称其为智能土壤有机体检测器(Smart SOD,图1)的内容,以自动评估土壤样品的独特的底物,线虫和微肌动物组成部分。
这种空间的体积如此之小,分析物分子的数量正在减少,需要单分子水平的检测方法。特别是,单个非荧光分子的检测非常重要,因为大多数分子没有荧光。相反,我们开发了用于灵敏检测非荧光分子的热透镜显微镜 (TLM),并实现了在 7 fL 中测定 0.4 个分子的浓度 [1] 和使用紫外激发激光计数单个大型生物分子 (λ-DNA) [2]。然而,由于光学背景较大,这是基于 TLM 原理的一个问题,因此无法实现蛋白质等小分子的计数。因此,我们通过引入微分干涉对比 (DIC) 显微镜的原理开发了微分干涉对比热透镜显微镜 (DIC-TLM) 以实现无背景检测。到目前为止,DIC-TLM 可以实现对单个非荧光分子的检测 [3],而之前的 DIC-TLM 使用可见光激发,无法检测在紫外线范围内有吸收的生物分子。本文开发了一种新型紫外激发DIC-TLM(UV-DIC-TLM)用于检测单个蛋白质分子。具体而言,设计了用于紫外激发的DIC棱镜和显微镜等光学元件,验证了UV-DIC-TLM的原理并评估了其性能。
这种空间的体积如此之小,分析物分子的数量正在减少,需要单分子水平的检测方法。特别是,单个非荧光分子的检测非常重要,因为大多数分子没有荧光。相反,我们开发了用于灵敏检测非荧光分子的热透镜显微镜 (TLM),并实现了在 7 fL 中测定 0.4 个分子的浓度 [1] 和使用紫外激发激光计数单个大型生物分子 (λ-DNA) [2]。然而,由于光学背景较大,这是基于 TLM 原理的一个问题,因此无法实现蛋白质等小分子的计数。因此,我们通过引入微分干涉对比 (DIC) 显微镜的原理开发了微分干涉对比热透镜显微镜 (DIC-TLM) 以实现无背景检测。到目前为止,DIC-TLM 可以实现对单个非荧光分子的检测 [3],而之前的 DIC-TLM 使用可见光激发,无法检测在紫外线范围内有吸收的生物分子。本文开发了一种新型紫外激发DIC-TLM(UV-DIC-TLM)用于检测单个蛋白质分子。具体而言,设计了用于紫外激发的DIC棱镜和显微镜等光学元件,验证了UV-DIC-TLM的原理并评估了其性能。
引言:里德堡原子中的电子可以被激发到非常大的主量子数[1-3]。由此产生的大偶极矩和极化率会导致特殊效应,如偶极阻塞:在特定体积内,由于前述偶极相互作用,一个以上的原子激发到里德堡态受到抑制[4]。相反,当激发激光与共振频率负向失谐时,会发生反阻塞或促进效应:单个初始激发会在相邻原子中引起更多的激发[5]。将阻塞和促进效应结合起来可以为里德堡原子网络中激发的相干操控提供灵活的方案[6,7]。里德堡原子网络的固有物理特性和相干原子操控方面的卓越技术[8-10]为量子模拟器和更广泛的量子技术提供了丰富多彩的工具箱[1-3,11-17]。里德堡网络还为量子信息处理器提供了有希望的基础[18-20]。我们的方法受到了原子电子学的启发,它封装了超冷原子的属性,通过不同形状和强度的激光场创建电路[21-25]。特别是,诸如原子电子晶体管和冷原子开关之类的原子器件已经被提出[26-28]并实现[29]。执行经典模拟或数字计算的另一个重要构建块是二极管。与电子器件一样,原子电子二极管也是通过将掺杂的导电冷原子系统组合在一起而提出的 [ 21 , 30 , 31 ]。在这里,我们展示了如何利用上述对里德堡激发的控制来构想特定的原子电子器件,其中动力学涉及里德堡激发而不是物质。激发的转移和控制是通过促进机制进行的,其中原子的激发态通过范德华相互作用结合适当选择的频率失谐在相邻原子中诱导激发。通过将这个想法应用于不同的网络,