基于灯笼的发光材料在解决不同领域遇到的科学问题方面表现出很大的能力。然而,在单波长辐射下实现全彩切换输出仍然是一个艰巨的挑战。在这里,我们报告了一个概念模型,可以通过对单个商业980 nm激光器上的多层核心壳纳米结构的全面转换演变的时间控制实现这一目标,而不是以前报道的两个或多个激发波长。我们表明,它能够通过在ER-TM-YB三重系统中构建合作调制效果,在非稳态激发下实现红色到绿色的颜色变化(从ER 3+),并通过通过时间付费技术来填充短期付出的蓝光(来自TM 3+)。进一步证明了TM 3+在操纵ER 3+上的过渡动力学中的关键作用。我们的结果深入了解了灯笼的光体物理学,并有助于开发新一代的智能发光材料,以实现新兴的光子应用。
摘要:光学微/纳米图案的高质量制造的可用性为基于光学机械(OM)声音和光的相互作用而开发的可扩展电路和设备的道路铺平了道路。在这项贡献中,我们提出了一项有关OM腔的新研究,可以使其与紧密整合的波导对其耦合进行精确控制,这是增强模式激发和波浪能陷入诱因的必要条件,为波浪指导,滤波,滤波,填料,结合和传感打开了许多潜在应用的可能性。此外,可以避免对笨重的实验设置和/或光纤维耦合/激发的需求。同时,优化了在腔体中共鸣的机械和光学模式的质量因素,以及它们的OM耦合系数:两种激发的高度结合是实现其声音(AO)相互作用的先决条件。为此,腔体的横向大小已被抛物面,具有将腔分离的额外好处和远离耦合区域的集成波导。有限元方法已用于执行全波分析,并提供了有关正确描述光学散射和辐射所需的模拟设置的准确讨论。
摘要 纺锤波是非快速眼动 (NREM) 睡眠期间的标志性振荡。它们与慢振荡 (SO) 一起被认为在巩固学习信息方面发挥着机械作用。纺锤波的数量和空间分布与睡眠前学习期间的大脑活动以及睡眠后的记忆表现有关。如果纺锤波被吸引到通过睡前学习任务激发的皮质区域,这就引出了一个问题:纺锤波的空间分布是否灵活,以及它们的区域表达是否也可以通过实验性大脑刺激来操纵。我们使用兴奋性经颅直流电刺激 (tDCS) 在重复测量实验设计中刺激左右运动皮质。刺激后,我们在睡眠期间记录了高密度脑电图 (EEG),以测试局部刺激如何调节睡眠纺锤波的区域表达。事实上,我们表明,睡眠前局部皮质部位的兴奋性 tDCS 会使纺锤波的表达偏向随后睡眠期间的兴奋位置。局部 tDCS 刺激对 SO 没有影响。这些结果表明睡眠纺锤波的空间拓扑结构既不是硬连线的也不是随机的,纺锤波可以灵活地指向外源刺激的皮质回路。关键词 1) 振荡,2) 睡眠纺锤波,3) 刺激
由于在较高的质量范围内缺乏任何检测信号,因此在直接检测实验的下一个前沿中出现了轻暗物质质量状态。在本文中,我们提出了一种新的检测材料,即一块石墨烯的双层堆栈来检测Sub-Mev暗物质。其电压可调的低能亚ev电子带隙使其成为轻质暗物质搜索实验的检测器材料的绝佳选择。我们使用随机相位近似计算其介电函数,并估计对亚M-EV暗物质电子散射和SUB-EV暗物质吸收的预测灵敏度。我们表明,双层石墨烯暗物质检测器可以像其他候选目标材料一样具有竞争力敏感性,例如超导体,但在这种大规模状态下具有可调阈值。双层石墨烯中的暗物质散射速率也以地球旋转的每日调制为特征,这可能有助于我们在将来的实验中减轻背景。我们还概述了检测器设计概念,并提供了可以在将来设置实验的噪声估计值。
交变磁体 MnTe 中的自旋电荷关联产生 THz 晶格和自旋动力学 New Journal of Physics 2020 , 22, 083029 Physical Review B 2021 , 104, 224424 Physical Review Materials 2023 , 7, 054601 Advanced Materials 2024 , 2314076
1 Dipartimento di Fisica,Politecnico di Milano,Piazza Leonardo da Vinci 32,I-20133 I-20133意大利米拉诺2理论上物理学研究所,物理学,华尔沙大学,华尔街5号,PLESEURA 5 11973,美国4物理学系,马萨诸塞州剑桥,马萨诸塞州剑桥市02139,美国5量子设备物理实验室,微型技术和纳米科学系,查尔默斯技术大学,SE-41296Göteborg,Sweden 6 Esrf - Esrf - esrf - 402 F-38043法国Grenoble 7 Dipartimento di Ingegneria civile e Ingegneria Informatica,Universit`a di Roma to vergata tor Vergata,通过Del Politecnico 1,I-00133 Roma,I-00133 Roma,Italy 8 Cnr Spin,cnr-spin,cormon de di vergata,del Polityecnection,Itemant itemant itemant itemant itemant Itectal Itection iTectal Itectal Itection。校园,DIDCOT OX11 0DE,英国10 NTT基础研究实验室,NTT Corporation,NTT Corporation,Atsugi,Kanagawa,Kanagawa,243-0198,日本日本11摄影科学司,Paul Scherrer Institut,Paul Scherrer Institut,5232 Villigen PSI,瑞士PSI,瑞士12史坦福兰材料和能源科学材料和能源科学,SLAC SLAC SLAC,MENIA,CARICANIA,CARICACHIA,CARICACHIA,CARICACHIA,CARICACHIA,CARICACHIA,CARICACHIA,CARICACHIA,CARICACHIA,940,斯坦福大学,加利福尼亚州斯坦福大学,美国94305,美国14号高级材料实验室,斯坦福大学,斯坦福大学,加利福尼亚州斯坦福大学,美国94305,美国15号功能问题和量子技术研究所,Stuttgart,PfaffenwaldringUnies上57,D-70550德国Stuttgart 17 CNR旋转,Dipartimento di Fisica,Politecnico di Milano,I-20133 Milano,意大利米兰
[1] D.Faktorová,M。Kuba,S。Pavlíková和P. Fabo,“使用现代微控制器的阻抗光谱实施”,Procedia结构完整性,第1卷。43,pp。288-293,2023。[2] Q. Yao,D.-D.-C。 Lu和G. Lei,“具有低输出电压波动器上电源转换器上的精确在线电池阻抗测量方法”,Energies,第1卷。 14,否。 4,p。 1064,2021年2月。[3] P. Haussmann,J。J. Melbert,“使用电动汽车的标准电池管理系统通过阻抗光谱进行传感器单个细胞温度测量,” SAE技术文件2020-01-0863,2020。 报价和N. P. Brandon,“使用电动机控制器激发对电池阻抗的在线测量”,《 IEEE车辆技术交易》,第1卷。 63,否。 6,pp。 2557-2566,2014年7月。[5] A. Christensen和A. Adebusuyi,“在电池管理系统中使用板载电化学阻抗光谱,” 2013年世界电动汽车研讨会(EVS27),巴塞罗那,西班牙,西班牙,PP。。。288-293,2023。[2] Q. Yao,D.-D.-C。 Lu和G. Lei,“具有低输出电压波动器上电源转换器上的精确在线电池阻抗测量方法”,Energies,第1卷。14,否。4,p。 1064,2021年2月。[3] P. Haussmann,J。J. Melbert,“使用电动汽车的标准电池管理系统通过阻抗光谱进行传感器单个细胞温度测量,” SAE技术文件2020-01-0863,2020。报价和N. P. Brandon,“使用电动机控制器激发对电池阻抗的在线测量”,《 IEEE车辆技术交易》,第1卷。63,否。6,pp。2557-2566,2014年7月。[5] A. Christensen和A. Adebusuyi,“在电池管理系统中使用板载电化学阻抗光谱,” 2013年世界电动汽车研讨会(EVS27),巴塞罗那,西班牙,西班牙,PP。。2557-2566,2014年7月。[5] A. Christensen和A. Adebusuyi,“在电池管理系统中使用板载电化学阻抗光谱,” 2013年世界电动汽车研讨会(EVS27),巴塞罗那,西班牙,西班牙,PP。1-7,2013。
磁绝缘子是通过利用镁电流来传播自旋信息的理想平台。但是,到目前为止,大多数研究都集中在Y 3 Fe 5 O 12(YIG)和其他一些铁磁性绝缘子上,而不是纯铁磁体。在这项研究中,我们证明了镁电流可以在EUS的薄膜中传播磁极。通过使用PT电极进行EUS的18 nm厚胶片中的局部和非局部转运测量,我们检测到由Spin Seebeck效应引起的热产生产生的镁电流。通过比较局部和非局部信号与温度(<30 K)和磁场(<9 t)的依赖性,我们确认了非局部信号的镁传输来源。最后,我们在EUSFIM(〜140 nm)中提取了镁扩散长度,这是与在同一纤维中测得的大吉尔伯特阻尼的良好对应关系。
由原子集合组成的量子比特因其对原子损失的抵抗力而具有吸引力。在这项工作中,我们考虑了一种实验上可行的协议,以相干方式从空间重叠的玻色-爱因斯坦凝聚态中加载自旋相关光学晶格。将每个晶格位置标识为一个量子比特,以空或填充位置作为量子比特基础,我们讨论了如何执行高保真单量子比特操作、任意量子比特对之间的双量子比特门以及无损测量。在这种设置中,原子损失的影响得到了缓解,原子永远不需要从基态流形中移除,并且不需要为量子比特设置单独的存储和计算基础,所有这些都可能是许多其他类型原子量子比特中退相干的重要来源。
选择用于优化的面板,该面板集中在T细胞表面抗原(CD3,CD4,CD8)上,并鉴定了具有内存(CD45RA,CD197)和激活(CD27,CD27,CD27,CD27,CD27,CD25,CD127)的亚群(CD25,CD127)的鉴定。还包括在其他谱系细胞类型(CD19,CD16,CD56,CD185)上表达的几种抗原。关于门控策略(图2),我们首先消除双重和死细胞,并根据大小和散射在淋巴细胞细胞上门控。淋巴细胞进一步分为T和B细胞。对NK细胞标记的CD3- / CD19-种群进行了询问。CD3+ T细胞被缩小到T辅助器(CD4)和细胞毒性(CD8)亚群中。CD4和CD8单阳性细胞的记忆和激活标记。CD4单阳性细胞还评估了调节性T细胞(CD25+,CD127-)。在第5和6面板中,CD28在T细胞上门控。在第6面板中,CD185在T和B细胞上门控。