天体物理无碰撞激波是宇宙中最强大的粒子加速器之一。超新星遗迹激波是由超音速等离子体流与星际介质剧烈相互作用产生的,据观测,它可以放大磁场 1 并将电子和质子加速到高度相对论速度 2 – 4 。在完善的扩散激波加速模型 5 中,相对论粒子通过反复的激波穿越而加速。然而,这需要一个单独的机制来预加速粒子以实现激波穿越。这被称为“注入问题”,它与电子尤其相关,并且仍然是激波加速中最重要的难题之一 6 。在大多数天体物理激波中,激波结构的细节无法直接解决,因此很难确定注入机制。这里我们报告了激光驱动等离子体流实验和相关模拟的结果,这些实验和模拟探测了在与年轻超新星遗迹相关的条件下湍流无碰撞激波的形成。我们表明,电子可以通过激波向相对论非热能转变过程中产生的小尺度湍流在一阶费米过程中得到有效加速,从而有助于克服注入问题。我们的观测为激波时的电子注入提供了新的见解,并为在实验室内控制研究宇宙加速器的物理原理开辟了道路。大多数天体物理激波都是无碰撞的,这意味着它们是由等离子体不稳定性形成的,等离子体不稳定性通过磁场放大、等离子体加热和粒子加速来耗散流能 6、7。因此,粒子注入与激波形成机制和激波产生的湍流磁场的性质密切相关。这些过程通常受激波马赫数(激波速度与环境阿尔文或声速之比)控制,但其控制方式尚不十分清楚。长期以来,航天器对地球弓形激波的现场测量已经形成了我们对中等阿尔文马赫数(MA ≈ 3 − 10)下无碰撞激波的理解(参考文献 8)。然而,由于这些奇异遥远激波的局部条件约束不充分,我们对超新星遗迹(SNR)激波相关的甚高马赫数范围(MA ≫ 10)的了解要有限得多,而且大部分都是通过数值模拟获得的 9 – 12。在过去十年中,人们在利用千焦耳级激光器产生超音速超阿尔文等离子体方面做出了巨大努力
激波是自然界最强大的粒子加速器之一,与相对论电子加速和宇宙射线有关。上游激波观测包括波的产生、波粒相互作用和磁压缩结构,而在激波和下游,可以观察到粒子加速、磁重联和等离子体喷流。在这里,我们使用磁层多尺度 (MMS) 展示了在地球弓形激波处产生的高速下游流动(喷流)的现场证据,这是激波重新形成的直接结果。由于上游等离子体波演化和弓形激波持续重新形成周期的综合作用,在下游观察到了喷流。这一产生过程也适用于通常存在无碰撞激波的行星和天体物理等离子体。
摘要 基于四颗磁层多尺度航天器穿越地球弓形激波期间的高时间分辨率数据,评估了无碰撞等离子体激波前沿等离子体熵的演变和等离子体能量重新分布的过程。将离子分布函数分离为激波附近具有不同特征行为的群体:上游核心群体、反射离子、回旋离子、激波附近捕获的离子和下游核心群体。分别确定了这些群体的离子和电子矩值(密度、体积速度和温度)。结果表明,随着静电势的增加,太阳风核心群体体积速度主要在斜坡处减慢,而不是像假设的那样在足部区域减慢。反射离子群体决定了足部区域的性质,因此足部区域的质子温度峰值是不同离子群体相对运动的结果,而不是任何离子群体热速度的实际增加。评估的离子熵表明,激波的整个过程中出现了显著的增加:离子熵的增强发生在激波前沿的脚部和斜坡处,反射离子与上游太阳风离子一起出现,各向异性不断增加,产生了离子尺度静电波的爆发。激波的电子熵没有显示出显著的变化:电子加热几乎是绝热的。统一天文学词库概念:太阳风 ( 1534 ) ;行星弓形激波 ( 1246 )
一维粒子模拟 (PIC) 用于分析新视野号绕冥王星太阳风 (SWAP) 仪器在距离太阳约 34 天文单位处观测到的行星际激波上游区域测得的能谱。使用单个种群模拟不同的太阳风离子 (SWI) 和拾取离子 (PUI) 种群,我们可以清楚地识别出每个种群对全球能谱的贡献。强调了激波前沿倾斜度在沿磁场流回远离前沿的上游区域的 PUI 形成中的重要作用。在本模拟中可以很好地恢复 SWAP 实验测得的能谱。详细分析表明:(1) 能谱的最高部分主要由回流的 PUI-H + 和 PUI-He + 形成; (2) 能谱的中间部分由太阳风 SW-H + 和 SW-He 2+ 入射离子组成,这些离子叠加在 PUI-H + 粒子群上,(3) 低能范围由入射 PUI-H + 组成。使用 PUI-H + 粒子群的初始填充壳分布(而不是零厚度壳),可以提高实验结果与模拟结果之间的一致性,因为这会强烈影响光谱的低能部分。这意味着 PUI-H + 离子在日光层中首次被拾取后,有足够的时间扩散到壳分布并填充壳分布,这表明随后的冷却对全球能谱有重要影响。
使用激波管中的平面激波对液滴碎裂进行 CFD 建模 Reshma Chandrasekar,航空航天工程 基于代理的 TB-HIV 合并感染模型,揭示协同病原体-病原体相互作用的机制 Alexis Hoerter,生物医学工程 了解工程从业者对 DEI 的概念 Sowmya Panuganti,工程教育 对多台 sUAS BVLOS 作业中机组人员心理工作负荷、态势感知和注意力的评估 Radhika Bhopatkar,环境与生态工程 优化气举系统以提高 Asmari 地层油井性能:技术经济视角 Setu Patel,工业工程 面向虚拟现实焊接模拟器建模,促进可访问和可扩展的培训 Ananya Ipsita,机械工程
摘要 在本文中,我们提出并验证了一种用于模拟航空航天应用的新型稳定可压缩流有限元框架。该框架由基于流线迎风/Petrov-Galerkin (SUPG) 的可压缩流 Navier-Stokes 方程、充当壁面函数的弱强制本质边界条件和充当激波捕获算子的基于熵的不连续性捕获方程组成。针对从低亚音速到跨音速流态的各种马赫数测试了该框架的准确性和稳健性。对 NACA 0012 翼型、RAE 2822 翼型、ONERA M6 机翼和 NASA 通用研究模型 (CRM) 飞机周围流动的二维和三维验证案例进行了气动模拟。将从所有案例的模拟中获得的压力系数与实验数据进行了比较。计算结果与实验结果一致性较好,证明了本文提出的有限元框架用于飞机气动模拟的准确性和有效性。
2. AS5011 - 可压缩流体流动课程内容:流体力学:流体流动的分类;欧拉和拉格朗日观点;流线、条纹线和路径线;速度梯度张量;流体流动控制方程;柯西应力;边界层;库埃特流。可压缩流动:热力学回顾;等熵流动关系;压缩性、声速和马赫数;一维稳定流动:绝热、无摩擦流动,有正激波 – 胡戈尼奥曲线、范诺流、瑞利流;二维稳定流动:有斜激波的流动、θ - β -M 曲线、普朗特-迈耶膨胀扇;一维非稳定流动:移动激波、激波管;流经 CD 喷嘴:面积-马赫关系、阻塞流、欠膨胀和过膨胀喷嘴;线性亚音速和超音速流动 – 普朗特-格劳尔特关系
13.摘要(最多 200 个字)本报告描述了 AEDC 连续流高超声速风洞中用于静态稳定性、压力、传热、材料/结构、边界层过渡和电磁波测试的程序。由于定义高超声速飞行器的热环境非常重要,因此特别强调传热技术。概述了高超声速飞行器部件开发中使用的材料/结构测试方法。不幸的是,预测过渡的方法已经困扰了空气动力学家三十多年,并且仍有许多未解问题。本报告简要介绍了影响过渡的许多参数,并为有兴趣专门研究此主题的人提供了大量参考资料。讨论了使用三重球的方法,并提供了说明性数据。电磁波测试是一种相对较新的测试技术,它涉及多个学科的结合:气动热力学、电磁学、材料/结构和高级诊断。这项新技术的本质是处理电磁波(RF 或 IR)在通过以高超音速飞行的导弹的弓激波、流场和电磁(EM)窗口时的传输和可能的失真。14.主题术语 电磁波、导弹导引头系统、高超音速飞行器、边界层、瞄准线误差、机鼻雷达罩
摘要 高能中性原子(ENA)是研究日球层结构的重要工具。最近,人们观测到来自日球层上风区和下风区的 ENA 通量(能量约 55 keV)强度相似。这使得这些观测的作者假设日球层是气泡状而不是彗星状,这意味着它没有延伸的尾巴。我们研究了很宽能量范围(3 – 88 keV)内 ENA 通量的方向分布,包括来自 IBEX(星际边界探测器)、INCA(卡西尼号上的离子和中性相机)和 HSTOF(太阳和日球层探测器上的高能超热飞行时间传感器)的观测。一个基本要素是 Zank 提出的终端激波处的拾取离子(PUI)加速模型。我们采用最先进的全球日光层、星际中性气体密度和 PUI 分布模型。基于“彗星状”日光层模型的结果,其通量大小接近 IBEX、HSTOF 和部分 INCA 观测到的 ENA 通量(5.2 – 13.5 keV 能量通道除外)。我们发现,在高能量下,来自尾部的 ENA 通量占主导地位(与 HSTOF 一致,但与 INCA 不一致)。在低能量下,我们的彗星状模型从上风向和下风向产生强度相似的 ENA 通量 — 因此,这不再是气泡状日光层的有力论据。
不同科学领域的研究 — 物理、化学和数学。随后,需要不同的技术将基础研究转化为应用研究并将其转化为产品。“这是一项非常复杂的任务,需要来自航空航天、机械、计算机科学、电子、通信、电气和材料科学领域的工程师。此外,我们还得到了热能、推进和结构工程部门的大力支持,”这位科学家补充道。几所学术机构为 HSTDV 的成功任务铺平了道路。印度理工学院班加罗尔分校航空航天系进行了面板分离和超燃冲压发动机相关研究,印度理工学院孟买分校进行了 HSTDV 前体的传热和计算研究,印度理工学院马德拉斯分校进行了推进研究和激波风洞实验,印度理工学院 Kharagpur 分校进行了风险评估研究,印度国家航空航天实验室 (NAL) 班加罗尔分校进行了上级碳环氧树脂鼻锥的设计和开发。HSTDV 团队还深情回忆了导弹专家 APJ Abdul Kalam 博士所发挥的作用,他激励了几位导弹科学家在印度国内研究下一代技术。