细胞模仿是多室的系统,可再现自然细胞的结构和功能。它们代表着迈向智能,自动和模块化寿命系统的重要一步。[1]可以量身定制细胞模仿,以有效地执行多种生化任务,并且可以设计用于与天然细胞的接口,从而弥合材料科学与生物学之间的差距。[2]基本的细胞模拟设计由一个主要的室(例如聚合物或脂质囊泡)组成,该室包含了各种结构和功能成分,包括子组门,细胞骨架,核酸,质子酸,蛋白质,蛋白质和酶。然而,随着组件的复杂性的增加,一个主要的障碍物成为复制真核细胞中发现的多门特征的能力,同时保持对
随着深度钻孔的增长和井文件的复杂性,对生产地层的更完整和有效的开发的要求增加,这增加了各种并发症的风险。当前,基于经过修饰的天然聚合物(自然存在的化合物)和合成聚合物(SPS)的试剂是工业上创建的聚合物化合物的合成聚合物(SPS),被广泛用于防止钻探过程中的新兴并发症。但是,与经过修改的天然聚合物相比,SPS形成了一个高分子重量化合物的家族,这些家族通过进行化学聚合反应完全合成。sps在其设计中提供了很大的灵活性。此外,可以调整它们的大小和化学成分,以提供几乎所有钻孔流体功能目标的特性。可以根据化学成分,反应类型及其对加热的反应进行分类。但是,由于其结构特性,某些SP的成本高,温度和耐盐性水平较差,并且在温度达到130 C时开始降解。这些缺点阻止SP在某些中和深井中使用。因此,本综述介绍了历史发展,特征,制造方法,分类以及SPS在钻孔流体中的应用。详细解释了SPS作为添加剂对钻孔流体的贡献,以详细解释流变学,填充物的产生,携带插条,流体润滑性和粘土/页岩稳定性。还描述了将SP添加到钻孔流体中时所实现的机制,影响和进步。还讨论了SPS在钻探流体中部署及其优势和缺点时遇到的典型挑战。经济问题也影响SPS在钻探流体中的应用。因此,评估了最相关的SP的成本以及合成中使用的单体的成本。SPS在钻孔流体中的环境影响及其制造工艺以及旨在减少这些影响的SP处理方法的进步以及其制造过程。提供了所需的未来研究解决SP财产和性能差距的建议。©2023作者。Elsevier B.V.的发布服务代表KEAI Communications Co. Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/ 4.0/)下的开放访问文章。
摘要:碳水化合物是本质上最丰富的生物分子,特别是在几乎所有植物和真菌中都存在多糖。由于其组成多样性,聚糖分析仍然具有挑战性。与其他生物分子相比,碳水化合物的高通量分析尚未开发。为了解决分析科学中的这一差距,我们开发了一种多重,高通量和定量方法,用于食品中的多糖分析。具体而言,使用非酶促化学消化过程将多糖解散,然后使用高性能液相色谱 - Quadru-飞机飞行时间质谱法(HPLC-QTOF-MS)进行寡糖手指。基于产生的寡糖的丰富性,进行了无标签的相对定量和绝对定量。方法验证包括评估一系列多糖标准和早餐谷物标准参考材料的恢复。9种多糖(淀粉,纤维素,β-葡聚糖,曼南,Galactan,Arabinan,xylan,xyloglucan,chitin)通过足够的准确性(5-25%偏差)和高可重现性成功地定量(2-15%CV)。此外,该方法还用于识别和定量多种食品样品集中的多糖。使用外部校准曲线获得了苹果和洋葱的9种多糖的绝对浓度,其中某些样品在某些样品中观察到了各种差异。■简介本研究中开发的方法将提供互补的多糖级信息,以加深我们对饮食多糖,肠道微生物群落和人类健康的相互作用的理解。
图3蒸发含有不同组合物的无柄液滴后获得的沉积模式。(a)液体的pH值。经许可进行调整。85版权所有2010,美国化学学会。(b)液滴的初始接触角。经许可复制。86版权所有2016,施普林格。(c)含有多物种纳米颗粒上不同底物上的梗液液滴。经许可复制。87版权所有2017,Elsevier。 (d)粒度和浓度的组合。 经许可进行调整。 88版权所有2019,Elsevier。87版权所有2017,Elsevier。(d)粒度和浓度的组合。经许可进行调整。88版权所有2019,Elsevier。88版权所有2019,Elsevier。
摘要:已提出分层TIS 2作为各种电池化学的多功能宿主材料。尽管如此,尚未完全了解其与水性电解质的兼容性。在此,我们报告了可逆的水合过程,以说明相对稀释电解质中TIS 2的电活性和结构性演变,以用于可持续的锂离子电池。溶剂化的水分子在Tis 2层中与Li +阳离子一起插入,形成了一个水合相,具有LI 0.38(H 2 O)2-δTIS2的名义公式单位作为末端。我们明确地通过互补的电化学循环,Operando结构表征和计算模拟来确认两层插入水的存在。这样的过程是快速且可逆的,在1250 mA g -1的电流密度下提供60 mAh g -1放电能力。我们的工作为基于可逆的水共同点的高速水性锂离子电池提供了进一步的设计原理。W
20 世纪 90 年代初,当美国空军正在处理发动机故障时,Jeff Dulaney 一直在巴特尔哥伦布实验室率先研发一项名为激光冲击喷丸的新技术。激光喷丸工艺使用激光向金属发射强大的冲击波,在材料中产生压缩残余应力,从而延长其使用寿命。Dulaney 意识到他所做的工作可以解决 B-1 风扇叶片损坏的问题。Dulaney 和巴特尔的其他同事与 GE 航空合作,在 GE 航空设施中安装激光喷丸解决方案。1995 年,这一合作关系促成了俄亥俄州都柏林 LSP 科技公司的成立,Dulaney 和他的团队在那里进一步开发了该技术,用于商业和国防用途。Dulaney 申请并获得了空军的小企业创新研究合同,同年他成立了 LSPT 来资助该开发。
摘要。超导体技术技术的关键问题之一是防止淬火的保护。在将超导体设计为磁铁,线圈甚至电流导线时,应进行设计,以使超导体承受所有操作条件,尤其是那些迅速出现的操作条件,以快速排放或脉冲载荷。在使用Simulia Opera Platform中使用有限元分析的脉冲传输电流条件(零外部场)研究了基于NBTI绕组的超导赛车线圈模型。通过将电容器排放到包括超导体线圈作为元素的RLC电路中,可以产生几毫秒的脉冲持续时间和超过1 ka的峰值电流。已经进行了包括热和电磁溶液的多物理分析。过渡到正常状态和淬灭的发生与预期的临界曲线以及现有线圈几何形状估计的负载线一致。
在线存放在白玫瑰研究中的重用项目受版权保护,除非另有说明,否则保留所有权利。可以下载和/或印刷供私人学习,或者按照国家版权法所允许的其他行为。发布者或其他权利持有人可以允许全文版本的进一步复制和重复使用。这是通过该项目的白玫瑰研究在线记录的许可信息来指示的。
肠易激综合征(IBS)被分类为功能性胃肠道疾病的类别,这些功能性胃肠道疾病的特征是腹部不适或疼痛,并以腹泻或便秘的形式不规则肠运动,没有已知的有机原因。感染后的IBS(PI-IBS)是指肠道感染后发展IBS。包括胚泡在内的各种寄生虫被认为是PI-IBS的潜在原因。胚泡属。是一种单细胞寄生虫,在包括人在内的不同哺乳动物的肠道定植。几个因素,例如亚型,寄生虫负荷和与宿主相关的因素可能影响胚泡感染的结果。几项研究表明,胚泡属的存在之间存在关系。和IBS,因为它在IBS患者中经常发现。一些研究将胚泡的某些亚型(如胚泡ST-1和胚泡ST-3)与IBS联系起来,但大多数研究无法在IBS和特定亚型之间建立明显的关联。炎症,营养不良和肠道稳态的破坏是胚泡SPP的主要建议机制。可能导致IBS。