晚期/转移性骨和软组织肉瘤的有效治疗仍代表着尚未得到满足的医疗需求。靶向治疗的最新进展凸显了细胞周期依赖性激酶 (CDK) 抑制剂在包括肉瘤在内的多种癌症类型中的潜力。CDK 是细胞周期的主要调节器;它们的失调被列为“癌症标志”,而肉瘤也不例外。在这篇综述中,我们报告了 CDK 抑制剂在肉瘤治疗中的分子基础和潜在治疗意义。此外,我们描述并讨论了与传统治疗、靶向治疗和免疫治疗联合治疗的可能性和生物学原理,强调了未来研究将 CDK 抑制整合到肉瘤治疗中的潜在途径。
摘要:WEE1激酶参与G2/M细胞周期检查点控制和DNA损伤修复。功能性G2/M检查点对于具有p53突变的癌细胞中的DNA修复至关重要,因为它们缺乏功能性G1/s检查点。针对WEE1激酶的靶向抑制可能会导致肿瘤细胞凋亡,主要是在p53缺陷型肿瘤中,通过绕过G2/M检查点而无需正确修复DNA损伤,从而导致基因组不稳定性和染色体缺失。本综述旨在全面概述WEE1激酶的生物学作用以及WEE1抑制剂(WEE1I)治疗妇科恶性肿瘤的潜力。,我们利用WEE1I和妇科肿瘤学的适当关键字进行了2001年至2023年9月的详尽的文献搜索。WEE1I已被证明可以抑制肿瘤活性并增强临床前模型中化学疗法或放疗的敏感性,尤其是在p53突变的妇科癌症模型中,尽管不是仅限于p53杂化。最近,单独或与遗传毒性剂相结合,已证实其在I/II期妇科恶性肿瘤临床试验中的功效和安全性。此外,越来越清楚的是,其他DNA损伤途径的抑制剂与WEE1I表现出合成的致死性,WEE1调节治疗性免疫反应,为WEE1I和免疫检查点阻滞的结合提供了理由。在这篇综述中,我们总结了WEE1激酶的生物学功能,WEE1I的开发,并概述了WEE1I研究的临床前和临床数据,用于治疗妇科恶性肿瘤。关键字:WEE1抑制剂,细胞周期,妇科恶性肿瘤,Adavosertib,临床试验
图5。TBK1和IKKβ结构域组织的结构比较。 a)TBK1 KU D135N结构,显示了激酶结构域(KD)和泛素样域(ULD),具有插图的TBK1和IKKβKD。 (b)位于IKKβ杂质内的TBK1 KU D135N结构显示与IKKβ的支架二聚域(SDD)的兼容性。 与SDD相互作用的残基以紫色突出显示。 注意。 改编自“转载体磷酸化的储罐结合激酶1的分子基础”。 https://doi.org/10.1073/pnas.1121552109。 Ser172的磷酸化触发TBK1激活所需的构象变化,TBK1和IKKβ结构域组织的结构比较。a)TBK1 KU D135N结构,显示了激酶结构域(KD)和泛素样域(ULD),具有插图的TBK1和IKKβKD。(b)位于IKKβ杂质内的TBK1 KU D135N结构显示与IKKβ的支架二聚域(SDD)的兼容性。与SDD相互作用的残基以紫色突出显示。注意。改编自“转载体磷酸化的储罐结合激酶1的分子基础”。https://doi.org/10.1073/pnas.1121552109。 Ser172的磷酸化触发TBK1激活所需的构象变化,https://doi.org/10.1073/pnas.1121552109。Ser172的磷酸化触发TBK1激活所需的构象变化,Ser172的磷酸化触发TBK1激活所需的构象变化,
参考文献1。Berardo A等。胸苷激酶2的进步效率:临床方面,翻译进度和新兴疗法。j Neuromuscul dis。2022; 9(2):225-235。2。Garone C等。 胸苷激酶2缺乏的回顾性自然史。 J Med Genet。 2018; 55(8):515-21。 3。 Wang J等。 与TK2相关的线粒体DNA维持缺陷,肌病形式。 2018。 in:亚当MP等人,西雅图:华盛顿大学,西雅图; 1993-2022。 https://www.ncbi.nlm.nih.gov/books/nbk114628/。 2024年9月访问。 4。 Div>Domínguez-GonzálezC等。 晚期胸苷激酶2的效率:18例综述。 orphanet j Rare。 2019; 14(1):100。 5。 国家卫生研究院。 与TK2相关的线粒体DNA耗竭综合征,肌病形式.https://medlineplus.gov/genetics/conditic/condition/tk2-related-mitochondrated-mitochondrial-dna-depletion-depletion-syndrome-syndrome-syndrome-syndrome-myopathic-form/#genes。 2024年9月访问。 6。 克利夫兰诊所。 线粒体疾病。 https://my.clevelandclinic.org/health/diseases/15612-mitochondrial-diseases。 2024年9月访问。 7。 Amtmann D等。 TK2缺乏症综合征的影响及其通过核苷治疗对生活质量的治疗。 线粒体。 2023; 68:1-9。 8。 ma y。 2023。 欧洲。 海报53210。 9。 2024年9月访问。Garone C等。胸苷激酶2缺乏的回顾性自然史。J Med Genet。2018; 55(8):515-21。 3。 Wang J等。 与TK2相关的线粒体DNA维持缺陷,肌病形式。 2018。 in:亚当MP等人,西雅图:华盛顿大学,西雅图; 1993-2022。 https://www.ncbi.nlm.nih.gov/books/nbk114628/。 2024年9月访问。 4。 Div>Domínguez-GonzálezC等。 晚期胸苷激酶2的效率:18例综述。 orphanet j Rare。 2019; 14(1):100。 5。 国家卫生研究院。 与TK2相关的线粒体DNA耗竭综合征,肌病形式.https://medlineplus.gov/genetics/conditic/condition/tk2-related-mitochondrated-mitochondrial-dna-depletion-depletion-syndrome-syndrome-syndrome-syndrome-myopathic-form/#genes。 2024年9月访问。 6。 克利夫兰诊所。 线粒体疾病。 https://my.clevelandclinic.org/health/diseases/15612-mitochondrial-diseases。 2024年9月访问。 7。 Amtmann D等。 TK2缺乏症综合征的影响及其通过核苷治疗对生活质量的治疗。 线粒体。 2023; 68:1-9。 8。 ma y。 2023。 欧洲。 海报53210。 9。 2024年9月访问。2018; 55(8):515-21。3。Wang J等。 与TK2相关的线粒体DNA维持缺陷,肌病形式。 2018。 in:亚当MP等人,西雅图:华盛顿大学,西雅图; 1993-2022。 https://www.ncbi.nlm.nih.gov/books/nbk114628/。 2024年9月访问。 4。 Div>Domínguez-GonzálezC等。 晚期胸苷激酶2的效率:18例综述。 orphanet j Rare。 2019; 14(1):100。 5。 国家卫生研究院。 与TK2相关的线粒体DNA耗竭综合征,肌病形式.https://medlineplus.gov/genetics/conditic/condition/tk2-related-mitochondrated-mitochondrial-dna-depletion-depletion-syndrome-syndrome-syndrome-syndrome-myopathic-form/#genes。 2024年9月访问。 6。 克利夫兰诊所。 线粒体疾病。 https://my.clevelandclinic.org/health/diseases/15612-mitochondrial-diseases。 2024年9月访问。 7。 Amtmann D等。 TK2缺乏症综合征的影响及其通过核苷治疗对生活质量的治疗。 线粒体。 2023; 68:1-9。 8。 ma y。 2023。 欧洲。 海报53210。 9。 2024年9月访问。Wang J等。与TK2相关的线粒体DNA维持缺陷,肌病形式。2018。in:亚当MP等人,西雅图:华盛顿大学,西雅图; 1993-2022。 https://www.ncbi.nlm.nih.gov/books/nbk114628/。2024年9月访问。4。Div>Domínguez-GonzálezC等。 晚期胸苷激酶2的效率:18例综述。 orphanet j Rare。 2019; 14(1):100。 5。 国家卫生研究院。 与TK2相关的线粒体DNA耗竭综合征,肌病形式.https://medlineplus.gov/genetics/conditic/condition/tk2-related-mitochondrated-mitochondrial-dna-depletion-depletion-syndrome-syndrome-syndrome-syndrome-myopathic-form/#genes。 2024年9月访问。 6。 克利夫兰诊所。 线粒体疾病。 https://my.clevelandclinic.org/health/diseases/15612-mitochondrial-diseases。 2024年9月访问。 7。 Amtmann D等。 TK2缺乏症综合征的影响及其通过核苷治疗对生活质量的治疗。 线粒体。 2023; 68:1-9。 8。 ma y。 2023。 欧洲。 海报53210。 9。 2024年9月访问。Div>Domínguez-GonzálezC等。晚期胸苷激酶2的效率:18例综述。orphanet j Rare。2019; 14(1):100。 5。 国家卫生研究院。 与TK2相关的线粒体DNA耗竭综合征,肌病形式.https://medlineplus.gov/genetics/conditic/condition/tk2-related-mitochondrated-mitochondrial-dna-depletion-depletion-syndrome-syndrome-syndrome-syndrome-myopathic-form/#genes。 2024年9月访问。 6。 克利夫兰诊所。 线粒体疾病。 https://my.clevelandclinic.org/health/diseases/15612-mitochondrial-diseases。 2024年9月访问。 7。 Amtmann D等。 TK2缺乏症综合征的影响及其通过核苷治疗对生活质量的治疗。 线粒体。 2023; 68:1-9。 8。 ma y。 2023。 欧洲。 海报53210。 9。 2024年9月访问。2019; 14(1):100。5。国家卫生研究院。与TK2相关的线粒体DNA耗竭综合征,肌病形式.https://medlineplus.gov/genetics/conditic/condition/tk2-related-mitochondrated-mitochondrial-dna-depletion-depletion-syndrome-syndrome-syndrome-syndrome-myopathic-form/#genes。2024年9月访问。6。克利夫兰诊所。线粒体疾病。https://my.clevelandclinic.org/health/diseases/15612-mitochondrial-diseases。2024年9月访问。7。Amtmann D等。TK2缺乏症综合征的影响及其通过核苷治疗对生活质量的治疗。线粒体。2023; 68:1-9。8。ma y。2023。欧洲。 海报53210。 9。 2024年9月访问。欧洲。海报53210。9。2024年9月访问。US FDA TK2D患者听力。可在以下网址提供:https://www.umdf.org/tk2d-patient-listening-sessise-january-2022。10。balcells cf.2021。Nord Breakthrough Summit2021。11。Parikh S等。线粒体疾病的诊断和管理:线粒体医学协会的共识声明。Genet Med。 2015; 17(9):689–701。 12。DeBarcelos IP,Emmanuele V,HiranoM。主要线粒体肌病(PMM)的进步。 Curr Opin Neurol。 2019; 32(5):715-721。 13。 Dominguez-Gonzalez C等。 肌肉MRI特征模式,用于迟到的TK2缺陷诊断。 j Neurol。 2022; 269:3550–3562。 14。 El-Hattab AW,Scaglia F.线粒体DNA耗竭综合征:遗传基础,表现和治疗选择的审查和更新。 神经疗法。 2013; 10(2):186-98。Genet Med。2015; 17(9):689–701。 12。DeBarcelos IP,Emmanuele V,HiranoM。主要线粒体肌病(PMM)的进步。 Curr Opin Neurol。 2019; 32(5):715-721。 13。 Dominguez-Gonzalez C等。 肌肉MRI特征模式,用于迟到的TK2缺陷诊断。 j Neurol。 2022; 269:3550–3562。 14。 El-Hattab AW,Scaglia F.线粒体DNA耗竭综合征:遗传基础,表现和治疗选择的审查和更新。 神经疗法。 2013; 10(2):186-98。2015; 17(9):689–701。12。DeBarcelos IP,Emmanuele V,HiranoM。主要线粒体肌病(PMM)的进步。Curr Opin Neurol。2019; 32(5):715-721。 13。 Dominguez-Gonzalez C等。 肌肉MRI特征模式,用于迟到的TK2缺陷诊断。 j Neurol。 2022; 269:3550–3562。 14。 El-Hattab AW,Scaglia F.线粒体DNA耗竭综合征:遗传基础,表现和治疗选择的审查和更新。 神经疗法。 2013; 10(2):186-98。2019; 32(5):715-721。13。Dominguez-Gonzalez C等。肌肉MRI特征模式,用于迟到的TK2缺陷诊断。j Neurol。2022; 269:3550–3562。14。El-Hattab AW,Scaglia F.线粒体DNA耗竭综合征:遗传基础,表现和治疗选择的审查和更新。神经疗法。2013; 10(2):186-98。2013; 10(2):186-98。
图1:检测与SARS-COV-2病毒感染相关的宿主细胞蛋白和基因。a-f:人类胚胎干细胞衍生的心肌细胞(HESC-CMS)(上)和代表性的荧光图像(n = 6个不同的供体的六个不同供体)人类左心室(人LV)组织(人LV)组织(下部)(下)(下)(下)(下)(下)(下)(下)(下)(n = 6),对人类干细胞衍生的心肌细胞(HESC-CMS)(hESC-CMS)(HESC-CMS)(HESC-CMS)(HESC-CMS)(HESC-CMS)(HESC-CMS)(HESC-CMS)(HESC-CMS)(HESC-CMS)(HESC-CMS)进行了代表性荧光共焦图像(n = 3个独立的实验)。用4%甲醛固定细胞和组织,并用针对ACE2(a),TMPRSS2(b),B0AT1(C),Catherepsin B(d),Catherepsin l(e)和Furin(f)的原代抗体进行免疫标记,并与二次抗体conjugody Conjugy conjugugy conjugugy(f) 33342核标记(蓝色)。g:显示仅用二抗和HOECHST 33342核标记处理的对照细胞(上)和组织(下部)。比例尺显示50μm。h:图形数据显示了观察到的hESC-CM种群在可视化后(背景)呈阳性免疫标记的百分比,其靶向针对概述的蛋白质靶标产生的初级抗体的二抗。i:图形数据显示了hESC-CMS中病毒输入和加工基因表达的百万读数(rpm)±SEM(n = 7在三个不同的区分中重复)和人lv(n = 5个个体)。SLC6A19,CTSB和CTSL分别是编码B0AT1,组织蛋白酶B和组织蛋白酶L的基因。
针对己糖激酶 2 (HK2) 的小分子抑制剂的研发极大地吸引了癌症药物研发领域的注意力。然而,针对己糖激酶 (HK) 特定异构体的选择性抑制剂的研发仍然是一项艰巨的挑战。在这里,我们提出了一种多药效团建模方法,用于设计针对 HK2 的配体,对 FaDu 和 Cal27 口腔癌细胞系具有显着的抗增殖作用。分子动力学 (MD) 模拟表明,原型配体对 HK2 表现出更高的亲和力。除此之外,我们提出了一种可持续的合成途径:一种环保的单步工艺,通过在无过渡金属条件下以优异的产率在环境温度下将酯与胺直接酰胺化来促进,然后采用避免柱层析分离技术分离已鉴定的先导生物活性化合物(H2),该化合物表现出细胞周期停滞和细胞凋亡。我们观察到 HK2 的抑制导致线粒体膜电位丧失和线粒体自噬增加,这是一种潜在的抗癌作用机制。先导 H2 还减少了球体的生长。总之,这些结果表明,原型先导化合物具有抗癌潜力的 HK2 抑制的概念验证。
酪蛋白激酶 1 (CK1) 是丝氨酸/苏氨酸蛋白激酶家族,在细胞增殖、存活和代谢等各种细胞过程中发挥着至关重要的作用。CK1 表达失调与多种癌症的发展和进展有关,因此成为抗癌治疗的一个有吸引力的靶点。在这篇综述中,我们概述了目前用于靶向 CK1 进行癌症治疗的策略,并讨论了该领域的未来前景。我们重点介绍了不同的方法,包括小分子抑制剂、RNA 干扰、基因组编辑和免疫疗法,这些方法在靶向调节癌细胞中的 CK1 活性方面具有巨大潜力。此外,我们讨论了与靶向 CK1 相关的挑战,并提出了克服这些障碍的潜在策略。总体而言,靶向 CK1 作为癌症治疗的治疗策略具有巨大的前景,值得进一步研究这一领域。
电话:609-228-6898传真:609-228-5909电子邮件:tech@medchemeppress.com
抽象的特发性帕金森氏病(PD)在流行病学上与接触毒物(例如农药和溶剂)相关,其中包括各种污染我们环境的化学物质。大多数在结构上是不同的,但其毒性的常见细胞靶标是线粒体功能障碍,这是多巴胺能神经元选择性脆弱性涉及的关键病理触发因素。我们和其他人表明,环境线粒体毒物(例如农药烤面包酮和paraquat)以及有机溶剂溶剂三氯乙烯(TCE)似乎受到蛋白质LRK2的影响,蛋白质LRK2是PD的遗传危险因素。作为LRRK2介导囊泡运输并影响内溶性功能,我们假设LRRK2激酶活性可能会抑制毒性受损的线粒体的自噬去除,从而导致氧化应激升高。相反,我们怀疑对LRRK2的抑制作用,该抑制已被证明是针对由线粒体毒物引起的多巴胺能神经变性的,它将减少活性氧(ROS)的细胞内产生,并防止导致细胞死亡的线粒体毒性。为此,我们在体外测试了如果遗传或药物抑制LRRK2(MLI2),则可以抵抗与PD风险相关的四种毒物引起的ROS - Rotenone,paraquat,paraquat,tce和四氯乙烯(PERC)。同时,我们评估了MLI2抑制LRRK2是否可以预防体内TCE诱导的毒性,在我们观察到的TCE升高LRRK2激酶在多巴胺神经化学剂之前的Nigrostriatal段中的LRRK2激酶活性。我们发现LRRK2抑制作用阻止了毒物诱导的ROS并在体外促进线粒体,并保护了多巴胺能神经退行性变性,神经炎症和由TCE在体内引起的线粒体损害。我们还发现,具有LRRK2 G2019S突变的细胞显示出加重的毒物诱导ROS的水平,但通过MLI2抑制LRRK2,这可以改善。总的来说,这些数据支持LRRK2在毒物诱导的线粒体功能障碍中的作用,该功能通过氧化应激和自噬去除受损的线粒体而与PD风险相关。关键字:帕金森氏病(PD),基因X环境(GXE),环境有毒物质,亮氨酸富集重复激酶2(LRRK2),线粒体
Idelalisib • 复发性滤泡性淋巴瘤 (FL) 和复发性小淋巴细胞淋巴瘤 (SLL),适用于已接受过两种全身疗法 (AA) 的患者 • 复发性慢性淋巴细胞白血病 (CLL) 与利妥昔单抗联合使用,适用于因其他合并症而认为利妥昔单抗单药治疗合适的患者 2017