抗菌素耐药性的出现迫切需要针对致命细菌物种的13种治疗策略。在这项研究中,我们研究了激酶抑制剂作为宿主定向疗法(HDTS)的14个潜力,用于打击由细胞内细菌引起的15种传染性疾病,特异性沙门氏菌Typhimurium(STM)和16个结核病结核菌(MTB)。,我们使用18个基于人类细胞系和原发性19个巨噬细胞的STM和MTB的细胞内感染模型,使用18个已发表激酶抑制剂集(PKIS1和PKIS2)筛选了来自两个已发表激酶抑制剂集(PKIS1和PKIS2)的17个已知靶标轮廓(PKIS1和PKIS2)的17个已知靶标轮廓。此外,使用20种斑马鱼胚胎感染模型评估了化合物的体内功效。我们的激酶抑制剂筛查确定了STM的14个命中化合物21和MTB的19种命中化合物,这些化合物有效地针对细胞内细菌,宿主细胞有22种无毒。进一步的验证实验表明,大多数23个STM HIT化合物的高疗效以及它们在细胞系24和原发性巨噬细胞中完全清除细胞内感染的能力。从这些结构相关的STM HIT化合物,25 GSK1379738A和GSK1379760A中,在感染的26个斑马鱼胚胎中对STM表现出显着的有效性。针对细胞内MTB的活性化合物包括27种莫菲诺 - 米达佐/三唑 - 吡啶酮酮,专门针对激酶PIK3CB和28个PIK3CD,以及2-氨基苯二甲咪唑以及靶向BLK,ABL1和TRKA。31总体而言,这项研究29提供了对作用于宿主 - 病原体界面作用的关键激酶靶标,30种新型激酶抑制剂作为细胞内细菌感染的潜在HDT。
激酶抑制的外部控制已引起了越来越多的关注,在这种情况下,已经实现了激酶抑制作用的可逆和可抗光的光活化。4 - 12光定位一直是一种流行的方法,从而从战略上引入了一个光值保护部分,以防止与其靶酶相互作用。抑制活性仅在暴露于活性化合物的光和同时解放后才能恢复。迄今为止报告的大多数光刻片激酶抑制剂都依赖于紫外线来实现光激活,从而限制了它们在细胞环境中的使用。4 - 9虽然使用表现出的肾上腺笼中的使用 - 在破坏时进行了诊断变化,以监测细胞环境中笼子底物的光松益,13 - 17
图7细胞运动分析显示了TSP1抑制剂和siRNA敲低的作用。间隙打开区域的呈现为第0天间隙宽度的百分比。(a)以不同浓度的LSKL或SLLK处理(每组n = 3)。(b)用TSP1 siRNA和NC炒对照siRNA转染(每组n = 3)。(c)1 µM Y39983与5 µM LSKL或SLLK(每组n = 4)的处理。(d)1 µM Y39983的处理与100 pmol的对照或TSP1 siRNA(每组n = 4)。(E)在1 µM Y39983处理中与5 µM LSKL或SLLK的治疗中的Transwell迁移2天(每组n = 3)。(f)在1 µM Y39983与100 pmol的对照或TSP1 siRNA的处理中,Transwell迁移2天(每组n = 3)。sllk:控制肽; LSKL:TSP1阻断肽。数据表示平均值±SEM。lskl,亮氨酸 - 丝氨酸 - 赖氨酸 - 亮氨酸; NC,阴性对照; NS,没有统计学意义; siRNA,小干扰RNA; SLLK,丝氨酸 - 亮氨酸 - 亮氨酸 - 赖氨酸; TSP1,血小板传播-1。**p≤0.01; *p≤0.05(Student's T -Test)
Pinker-Domenig博士是哥伦比亚大学Vagelos医师和外科医生学院(VP&S)的放射学系的乳房成像部长,也是奥地利维也纳医科大学放射学系的兼职教授。她是翻译和临床乳房和肿瘤学成像的专家。她的研究兴趣专注于具有高分辨率磁共振成像(MRI)的高级乳房成像(MRI),使用多个先进的MRI参数,混合成像(PET)/MRI具有特定的示踪剂,以及在肿瘤学成像中应用AI以开发成像生物标志物的精确药物。她在乳房和肿瘤学成像中发表了超过200份经同行评审的论文。https://www.ncbi.nlm.nih.gov/myncbi/1ree7pglgsf5q/bibliography/public/
目的:甲状腺癌的治疗景观随着针对VEGFR,BRAF,MEK,NTRK和RET的激酶抑制剂的可用性而迅速变化。我们对激酶抑制剂在甲状腺癌中的作用进行了最新审查,并讨论即将进行的试验。设计与方法:对描述甲状腺癌激酶抑制剂的可用文献进行了全面综述。结果和结论:激酶抑制剂已成为转移性放射性碘 - 饮食性甲状腺癌患者的护理标准。短期治疗可以将分化的甲状腺癌重新敏感为放射性碘,从而有可能改善与长期使用激酶抑制剂相关的结果和保留毒性。Cabozantinib的批准为进行性放射性放射性碘 - 弗拉克疗法分化后,索拉非尼或Lenvatinib失败后,甲状腺癌增加了活性药物的可用武器群。vandetanib和cabozantinib已成为转移性甲状腺癌的主要治疗方法,而不管RET突变状态如何。selpercatinib和pralsetinib,有效和选择性受体激酶抑制剂具有针对RET的活性,彻底改变了甲状腺甲状腺癌和其他具有RET驱动突变的甲状腺癌的治疗范式。dabrafenib加上trametinib用于BRAF突变的甲状腺甲状腺癌为这种侵略性癌症提供了有效的治疗选择,并具有令人沮丧的预后。为了设计甲状腺癌的下一代药物,未来的努力将需要集中精力,以更好地理解对激酶抑制的抗性机制,包括旁路信号传导和逃生突变。
摘要:Aurora 激酶属于高度保守的丝氨酸/苏氨酸激酶家族,在细胞周期调控中发挥关键作用,由三个成员组成:Aurora 激酶 A、B 和 C,它们是维持染色体稳定性所必需的关键有丝分裂调节剂。Aurora 激酶在有丝分裂的多个事件中起着至关重要的作用,例如协调染色体和细胞骨架事件、调节纺锤体组装检查点通路和胞质分裂,以确保细胞周期的顺利进行。除了有丝分裂功能外,Aurora 激酶还参与减数分裂的调节。在各种实体和血液系统癌症中都检测到了 Aurora 激酶的基因扩增/突变和过表达。在人类肿瘤中,Aurora 激酶表现出与其有丝分裂作用相关的致癌作用,从而驱动癌细胞增殖和存活。 Aurora 激酶活性失调会导致着丝粒功能、纺锤体组装、染色体排列和胞质分裂失败,最终导致有丝分裂异常和遗传不稳定。这些发现强调了 Aurora 激酶在癌症中的关键作用,促使人们认识到它们是癌症治疗的重要靶点。本综述概述了 Aurora 激酶的结构和功能,并阐明了它们在癌症中的致癌作用。
图 5. AB801 与奥沙利铂 (OXA) 和抗 PD-1 (PD-1) 联合使用可显著降低肿瘤体积,与双药 OXA + PD-1 相比,可提高存活率。C57BL/6 小鼠皮下注射 1x10 6 MC38 细胞。当肿瘤达到 ~100 mm 3 时开始治疗,每组 n=10 只小鼠。OXA 以 10 mg/kg Q7DX4 腹腔注射给药,抗 PD-1 或同种型对照以 10 mg/kg Q5D 腹腔注射给药,AB801 以 30 mg/kg BID 口服给药。A) 各治疗组的总肿瘤体积。单药 AB801 治疗未观察到肿瘤生长的显著差异。使用混合效应模型和 Dunnett 多重比较检验计算统计学显着性。三联体 vs. OXA + PD-1 的 p = 0.0118。点代表平均值 ± SEM。B) 存活率,肿瘤大于 2000 mm 3 的动物被视为已达到临床终点。显著性通过 Mantel-Cox 检验确定。三联体 vs. OXA + PD-1 的 p = 0.0419。C) 蜘蛛图显示每只动物的肿瘤体积和每次治疗的完全消退 (CR) 次数。虚线表示治疗结束。
摘要janus激酶(JAK)和信号换能器和转录途径的激活因子(STAT)途径已被确定为Areata病理生理学的关键参与者,并且是潜在的治疗靶标。在这里,我们对脱发中的Janus激酶抑制剂的叙述进行了叙述性回顾。几项临床试验以及较小的研究表明,即使在常规治疗失败的患者中,口服Janus激酶抑制剂治疗也可以通过口服Janus激酶抑制剂治疗缓解。barityib是美国FDA批准的脱发Areata的唯一一种,但对其他口服Janus激酶抑制剂(如Tofacitinib,Ruxolitinib和Ritlecitinib)的数据也很有希望。较少的临床试验研究了脱发的局部janus激酶抑制剂,由于结果不良,其中许多临床抑制剂提早终止了脱发。总体而言,Janus激酶抑制剂是用于治疗难治性脱发的治疗库的有效补充。需要进一步的工作来检查Janus激酶抑制剂长期使用的影响,局部Janus激酶抑制剂的功效,以及鉴定可以预测对各种Janus激酶抑制剂的差异治疗反应的生物标志物。
摘要 肝星状细胞 (HSC) 向活化状态的转分化会通过释放细胞外基质 (ECM) 成分增强肝纤维化,从而扭曲肝脏结构。由于可用的抗纤维化药物有限,可以考虑针对活化 HSC 的药物干预进行治疗。A-激酶锚定蛋白 12 (AKAP12) 是一种支架蛋白,可将蛋白激酶 A/C (PKA/PKC) 和细胞周期蛋白引导到特定位置,在时空上控制它们的生物学效应。研究表明,AKAP12 的支架功能会因磷酸化而改变。在之前发表的研究中,观察到了 AKAP12 磷酸化与 HSC 活化之间的关联。在这项研究中,我们证明,AKAP12 对内质网 (ER) 驻留胶原蛋白伴侣热休克蛋白 47 (HSP47) 的支架活性受到活化 HSC 中 AKAP12 位点特异性磷酸化的强烈抑制。CRISPR 定向基因编辑 AKAP12 的磷酸化位点可恢复其对 HSP47 的支架,抑制 HSP47 的胶原蛋白成熟功能和 HSC 活化。AKAP12 磷酸化编辑可显著抑制小鼠的纤维化、ER 应激反应、HSC 炎症信号和肝损伤。我们的总体研究结果表明 AKAP12 磷酸化具有促纤维化作用,可能成为肝纤维化治疗干预的靶点。
疟疾是一种由疟原虫引起的热带疾病,通过受感染的按蚊叮咬传播。蛋白激酶 (PK) 在疟疾病原体的生命周期中起着关键作用,使这些蛋白质成为抗疟药物研发活动的有吸引力的靶标。作为了解寄生虫信号传导功能的努力的一部分,我们报告了对八种疟原虫 PK 的生物信息学流程分析的结果。到目前为止,还没有进行过 P. malariae 和 P. ovale 激酶组组装。我们对预测的激酶进行了分类、整理和注释,以更新迄今为止发表的 P. falciparum、P. vivax、P. yoelii、P. berghei、P. chabaudi 和 P. knowlesi 激酶组,并首次报告了 P. malariae 和 P. ovale 的激酶组。总体而言,在所有疟原虫属激酶组中鉴定出 76 至 97 种 PK。大多数激酶被分配到九个主要激酶组中的七个:AGC、CAMK、CMGC、CK1、STE、TKL、OTHER;以及疟原虫特异性组 FIKK。约 30% 的激酶已深入分类为组、科和亚科级别,只有约 10% 仍未分类。此外,更新和比较间日疟原虫和恶性疟原虫的激酶组可以优先选择激酶作为潜在的药物靶标,可用于探索发现抗疟新药。通过这种综合方法,我们选出了 37 种蛋白激酶作为潜在靶点,并鉴定出对无性疟原虫 (3D7 和 Dd2 菌株) 阶段具有中等体外活性的试验化合物,这些化合物可作为未来寻找有效抗疟药物的起点。2022 年由 Elsevier BV 代表计算和结构生物技术研究网络出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )。