气候变化很可能会增加灌溉用水的需求,因此,如果维持当前的灌溉供应和需求条件,可以降低地中海盆地的水安全。可以通过(1)通过更有效的灌溉技术有效性来减少灌溉用水需求,(2)通过采用新技术进步,(3)转化为雨养农业,以及(4)基于自然的解决方案来增加灌溉水的需求。这项研究的目的是通过分析社会经济发展的对比场景来评估这些适应选择对水安全的不同组合的有效性。我们在西班牙东南部的三种共享社会经济途径(SSP)下,定义了气候变化,土地使用变化和适应措施的合理情景,代表了社会经济发展的不同故事情节。我们考虑了三个SSP方案,包括可持续性途径(SSP1),道路通路中间(SSP2)和化石燃料开发途径(SSP5)。未来的土地利用分布是通过ICLUE土地使用变化模型来获得灌溉用水和供应的差异,从而导致灌溉农业中的差异(SSP1),常数(SSP2)和增加(SSP5)。使用SPHY-MMF水文 - 土壤侵蚀模型对每种情况的影响对一系列水安全指标进行了量化。ssp5显示了对其他水安全指标的中间影响,这是通过年度降水量大大减少来解释的。SSP2场景认为气候变化非常有限,对水安全产生了最严重的影响,包括增加植物水压力,洪水排出,山坡侵蚀和沉积物产量。根据SSP1的,占据了大多数气候变化适应策略,灌溉用水的需求大大减少,因为从灌溉转移到雨水农业以及减少赤字灌溉的实施,而基于自然的解决方案则减少了对其他水安全指标的影响。 在SSP5下,从雨天到灌溉农业的转换会导致灌溉用水需求的显着增加,这可以通过增加淡化的灌溉供水来满足。 这项研究有助于探索不同的未来社会经济途径如何影响水安全,从而支持基于证据的政策发展。,占据了大多数气候变化适应策略,灌溉用水的需求大大减少,因为从灌溉转移到雨水农业以及减少赤字灌溉的实施,而基于自然的解决方案则减少了对其他水安全指标的影响。在SSP5下,从雨天到灌溉农业的转换会导致灌溉用水需求的显着增加,这可以通过增加淡化的灌溉供水来满足。这项研究有助于探索不同的未来社会经济途径如何影响水安全,从而支持基于证据的政策发展。
农艺学及其范围,种子和播种,耕作和tilth,作物密度和几何形状,作物营养,肥料和肥料,养分利用效率,水资源,水资源水资源,水厂水的关系,作物水需求,水利用效率,灌溉调度标准和方法,灌溉标准和方法,灌溉水质量,质量,灌溉水质量,水,水的认识。杂草 - 重要性,分类,农作物杂草竞争,杂草管理原理和方法的概念,除草剂分类,选择性和抗性,转化性。作物的生长和发展,影响生长和发展的因素,植物意识型,作物轮作及其原理,作物的适应和分配,有问题的地区的作物管理技术,收获和农作物的脱粒。实用
项目名称 初始建设成本(百万美元) 年度成本(百万美元) Karadobi $ 2,213 $ 15.9 Mabil $ 1,792 $ 13.5 Mendaia $ 2,114 $ 17.9 Border $ 1,985 $ 17.2
精准农业与灌溉 — — 美国当前观点 Steven R. Evett,美国农业部农业研究局自然资源与可持续农业系统代理副局长,steve.evett@ars.usda.gov Susan A. O'Shaughnessy,美国农业部农业研究局农业研究工程师,邮政信箱 10,2300 Experimental Station Road,Bushland,TX 79102,美国,Susan.O'Shaughnessy@ars.usda.gov Manuel A. Andrade,美国农业部农业研究局赞助的橡树岭科学与教育研究所农业研究工程师,邮政信箱 10,2300 Experimental Station Road,Bushland,TX 79102,美国,Alejandro.Andrade@ars.usda.gov 摘要精准农业 (PA) 作为农业经营的概念框架,满足了管理农场、流域、区域和国际田间和田间差异的需求。自 20 世纪 80 年代美国全球定位系统 (GPS) 向公众开放以来,PA 的使用方式、所涉及的目标以及支持它的技术发生了巨大变化。结合最初为卫星图像开发的地理信息系统 (GIS) 计算机技术,PA 成为农民规划特定地点农业作业的主流工具,早期包括施肥,随后是播种率、种子品种、农药喷洒,现在是特定地点灌溉。配备 GPS 转向和位置感知监控系统的设备允许将预先确定的特定地点处方图下载到设备中,并用于例如在喷洒系统经过水道时关闭喷洒系统。支持 GPS 的收割设备生成的产量图是用于特定地点管理的第一批数据之一,由于缺乏共变田间数据和基于土壤时空特性如何影响植物发育的充分决策支持系统 (DSS),结果往往令人困惑。然而,这种被动和间接的 PA 已经发展到可以提供更强大的解决方案,例如,根据地理参考土壤采样提供可变速率的肥料施用,从而生成肥料需求处方图。或者再举一个例子,基于多卫星传感器融合的 30 米分辨率作物用水地图进行空间可变灌溉管理。许多更成功的 PA 技术涉及机载传感器系统,该系统将数据提供给嵌入式计算平台,从而对设备进行实时调整。这种主动和直接的 PA 系统使用现代技术,例如,在有杂草时打开喷洒设备,否则关闭,或者在非生物胁迫传感器指示作物缺水时打开可变速率灌溉喷嘴。此类监控和数据采集 (SCADA) 系统依赖于基于对生物物理学和生物系统的复杂理解的算法。如今,计算能力、数据采集和管理基础设施、新建模范式和空间决策支持系统的融合为 PA 带来了新的可能性。PA 服务的提供者现在包括从国家到地方各级的政府机构、私人提供者(通常使用来自政府地面、空中和卫星传感系统的公开数据)、大学推广系统和农民合作社。数据来源范围从公共领域到农民或第三方持有的私人数据。有关数据标准、数据共享、数据所有权以及公共和私人权利的问题进一步增加了现代 PA 的复杂性,但公共和私人机构都在积极解决这些问题。
第 14 章,环境问题——下游水质与灌溉之间存在直接关系。第 14 章介绍了这种关系。如果为特定地点选择灌溉方法和系统不当或任何系统管理不善,都可能导致水分布不均匀、土壤侵蚀、径流过多和深层渗透过多。径流可能携带溶解或附着在土壤颗粒上的农用化学品和植物养分(例如磷酸盐)。流到植物根区以下的过量灌溉水(深层渗透)可能携带可溶盐、养分(硝酸盐)、杀虫剂和土壤剖面中可能存在的其他有毒元素。过量的灌溉水及其溶液中所含的任何物质通常最终要么成为地下水补给,要么返回下游地表水。
精准农业与灌溉 – 美国当前观点 Steven R. Evett,美国农业部农业研究局自然资源与可持续农业系统代理副局长,steve.evett@ars.usda.gov Susan A. O’Shaughnessy,美国农业部农业研究局农业研究工程师,P.O.抽屉 10,2300 Experimental Station Road,Bushland,TX 79102,美国,Susan.O’Shaughnessy@ars.usda.gov Manuel A. Andrade,美国农业部农业研究局赞助的橡树岭科学与教育研究所农业研究工程师,P.O.抽屉 10,2300 Experimental Station Road,Bushland,TX 79102,美国,Alejandro.Andrade@ars.usda.gov 摘要。精准农业 (PA) 作为农业经营的概念框架,满足了管理农场、流域、区域和国际范围内田间和田间变异的需求。自 20 世纪 80 年代美国现代 PA 诞生以来,PA 的使用方式、所涉及的目标以及支持它的技术发生了巨大变化。全球定位系统 (GPS) 可供公众使用。结合最初为卫星图像开发的地理信息系统 (GIS) 计算机技术,PA 成为农民规划特定地点农业经营的主流工具,早期包括施肥,其次是播种率、种子品种、农药喷洒,现在是特定地点灌溉。配备 GPS 转向和位置感知监督控制系统的设备允许将预先确定的场地特定处方图下载到设备中,并用于关闭喷洒系统,例如,当喷洒系统经过水道时。支持 GPS 的收割设备生成的产量图是用于场地特定管理的第一批数据之一,由于缺乏共变现场数据和基于土壤时空特性如何影响植物发育的充分决策支持系统 (DSS),结果往往令人困惑。然而,这种被动和间接的 PA 已经发展到提供更强大的解决方案,例如,根据地理参考土壤采样提供可变速率施肥,从而生成肥料需求处方图。或者另一个例子,基于多卫星传感器融合的 30 米分辨率作物用水图进行空间可变灌溉管理。许多较为成功的 PA 技术都涉及机载传感器系统,该系统将数据提供给嵌入式计算平台,从而对设备进行实时调整。此类主动和直接 PA 系统使用现代技术,例如,在有杂草时打开喷洒设备,否则关闭,或者在非生物胁迫传感器指示作物缺水时打开可变速率灌溉喷嘴。此类监控和数据采集 (SCADA) 系统依赖于基于对生物物理学和生物系统的复杂理解的算法。如今,计算能力、数据采集和管理基础设施、新建模范式和空间决策支持系统的融合为 PA 带来了新的可能性。PA 服务的提供者现在包括从国家到地方各级的政府机构、私人提供者(通常使用来自政府地面、空中和卫星传感系统的公开数据)、大学推广系统和农民合作社。数据来源范围从公共领域到农民或第三方持有的私人数据。有关数据标准、数据共享、数据所有权以及公共和私人权利的问题进一步增加了现代 PA 的复杂性,但公共和私人机构都在积极解决这些问题。
精准农业与灌溉 — — 美国当前观点 Steven R. Evett,美国农业部农业研究局自然资源与可持续农业系统代理副局长,steve.evett@ars.usda.gov Susan A. O'Shaughnessy,美国农业部农业研究局农业研究工程师,邮政信箱 10,2300 Experimental Station Road,Bushland,TX 79102,美国,Susan.O'Shaughnessy@ars.usda.gov Manuel A. Andrade,美国农业部农业研究局赞助的橡树岭科学与教育研究所农业研究工程师,邮政信箱 10,2300 Experimental Station Road,Bushland,TX 79102,美国,Alejandro.Andrade@ars.usda.gov 摘要精准农业 (PA) 作为农业经营的概念框架,满足了管理农场、流域、区域和国际田间和田间差异的需求。自 20 世纪 80 年代美国全球定位系统 (GPS) 向公众开放以来,PA 的使用方式、所涉及的目标以及支持它的技术发生了巨大变化。结合最初为卫星图像开发的地理信息系统 (GIS) 计算机技术,PA 成为农民规划特定地点农业作业的主流工具,早期包括施肥,随后是播种率、种子品种、农药喷洒,现在是特定地点灌溉。配备 GPS 转向和位置感知监控系统的设备允许将预先确定的特定地点处方图下载到设备中,并用于例如在喷洒系统经过水道时关闭喷洒系统。支持 GPS 的收割设备生成的产量图是用于特定地点管理的第一批数据之一,由于缺乏共变田间数据和基于土壤时空特性如何影响植物发育的充分决策支持系统 (DSS),结果往往令人困惑。然而,这种被动和间接的 PA 已经发展到可以提供更强大的解决方案,例如,根据地理参考土壤采样提供可变速率的肥料施用,从而生成肥料需求处方图。或者再举一个例子,基于多卫星传感器融合的 30 米分辨率作物用水地图进行空间可变灌溉管理。许多更成功的 PA 技术涉及机载传感器系统,该系统将数据提供给嵌入式计算平台,从而对设备进行实时调整。这种主动和直接的 PA 系统使用现代技术,例如,在有杂草时打开喷洒设备,否则关闭,或者在非生物胁迫传感器指示作物缺水时打开可变速率灌溉喷嘴。此类监控和数据采集 (SCADA) 系统依赖于基于对生物物理学和生物系统的复杂理解的算法。如今,计算能力、数据采集和管理基础设施、新建模范式和空间决策支持系统的融合为 PA 带来了新的可能性。PA 服务的提供者现在包括从国家到地方各级的政府机构、私人提供者(通常使用来自政府地面、空中和卫星传感系统的公开数据)、大学推广系统和农民合作社。数据来源范围从公共领域到农民或第三方持有的私人数据。有关数据标准、数据共享、数据所有权以及公共和私人权利的问题进一步增加了现代 PA 的复杂性,但公共和私人机构都在积极解决这些问题。
第 14 章,环境问题——下游水质与灌溉之间存在直接关系。第 14 章介绍了这种关系。如果在特定地点选择灌溉方法和系统不当或任何系统管理不善,都可能导致水分布不均匀、土壤侵蚀、径流过多和深层渗透过多。径流可能携带溶解或附着在土壤颗粒上的农用化学品和植物养分(例如磷酸盐)。流到植物根区以下的过量灌溉水(深层渗透)可能携带可溶性盐、养分(硝酸盐)、杀虫剂和土壤剖面中可能存在的其他有毒元素。过量的灌溉水及其溶液中所含的任何物质通常最终要么成为地下水补给,要么返回下游地表水。
第 14 章,环境问题——下游水质与灌溉之间存在直接关系。第 14 章介绍了这种关系。如果在特定地点选择灌溉方法和系统不当或任何系统管理不善,都可能导致水分布不均匀、土壤侵蚀、径流过多和深层渗透过多。径流可能携带溶解或附着在土壤颗粒上的农用化学品和植物养分(例如磷酸盐)。流到植物根区以下的过量灌溉水(深层渗透)可能携带可溶性盐、养分(硝酸盐)、杀虫剂和土壤剖面中可能存在的其他有毒元素。过量的灌溉水及其溶液中所含的任何物质通常最终要么成为地下水补给,要么返回下游地表水。
下面课程的模型顺序是学生完成课程的一个途径。下面的信息不是官方的教育计划。MPC辅导员可以根据您的学术,职业和个人目标来帮助您制定个性化的教育计划。访问MPC的咨询网站,以获取有关咨询和最新计划要求的更多信息。