由于全球人口不断扩大,农业技术不得不发展以满足粮食需求。传统方法可能很有用,但缺乏效率,可持续性和可扩展性。这导致农业行业调查了物联网和AI等复杂技术,从而导致了聪明的农业。农业工程领域的IoT和AI正在通过帮助农民最大化资源,增强生产并减少环境影响来改变业务。物联网从农业来源收集了包括土壤,天气,农作物健康和设备在内的农业来源。农场周围的传感器不断监视这些因素,提供了大量数据,这些数据揭示了农业生态系统动态。物联网设备将数据提供给云平台以进行分析和解释。这种集成的数据收集和传输方法基于智能农业,从而实现了准确的农业监测和控制。AI对于将数据转化为智能至关重要。AI使用机器学习算法来识别预测分析和决策的数据模式和趋势。天气预测和土壤水分水平可能有助于AI模型确定种植和收获期。AI驱动的系统还可以鉴定植物性疾病,昆虫侵扰并提供重点疗法,从而最大程度地减少使用广谱农药的使用。AI可帮助农民做出数据驱动的决定,以提高作物产量,降低投入成本并改善农场管理。精确农业是将物联网和AI在农业工程中结合的主要好处。精确农业涉及微管理农场,具体取决于当地变量。可变费率技术(VRT)将化肥和水应用于特定领域,而不是整个农场。径流和化学用法减少,优化资源利用并最大程度地减少环境效应。物联网和人工智能帮助农业维护自己。农民可以通过监测和预测环境条件来节省水,最大程度地减少温室气体排放并保护土壤健康。智能灌溉系统中的物联网传感器评估土壤水分和天气状况,以实时修改水分输送,从而确保农作物获取足够的水而不会浪费。AI驱动的分析也可能发现可持续的作物旋转模式,以减少土壤养分耗竭并促进生物多样性。关键字:管理,真实数据,分析,模型,数据,传感器,机器,物联网,AI
09:30-11:30 开幕式:主题演讲和小组讨论公用事业规模项目马哈拉施特拉邦目前的太阳能政策和监管制度以及未来发展道路★小组讨论马哈拉施特拉邦太阳能项目的未来——整体体验——从提交投标到工厂运营模块/电池进口的保障税——保障税后的 2020 年市场——到 2022 年达到 100GW...这真的可以实现吗? - 电网削减、PPA 重新谈判、付款延迟等挑战 - 开放式接入、自保和集团自保模式中的机遇和挑战 - 模块定价路线图及其对项目调试的影响 - 州和中央太阳能竞标的进展 - 太阳能园区的现状、撤离挑战 - 退出策略:INVITS、资产出售、并购、IPO 挑战 - 在印度屋顶太阳能竞赛中,浦那已领先于其他城市: • 浦那是马哈拉施特拉邦第二大城市,凭借 130 兆瓦 (MW) 的屋顶太阳能发电容量击败了德里、孟买和金奈。 - 为何净计费系统将扼杀马哈拉施特拉邦的屋顶太阳能市场:• 屋顶太阳能领域的公司正在抗议建议进行这种转换的法规草案• 全国实际的屋顶太阳能装置刚好超过 4GW- 马哈拉施特拉邦邀请投标 3.65 MW 的屋顶和地面安装太阳能项目- 马哈拉施特拉邦 1,350 MW 太阳能拍卖反响不佳,仅有 5 MW 的单一投标- 马哈拉施特拉邦设定了一个雄心勃勃的目标,即到 2022 年实现 12 GW 的太阳能发电量。- 制造商反对 MERC 的太阳能草案:• 马哈拉施特拉邦太阳能制造商协会 (MASMA) 声称,马哈拉施特拉邦电力监管委员会 (MERC) 最近发布的可再生能源法规草案如果实施,将摧毁该邦的太阳能产业。- 浦那公司开发太阳能灌溉系统。 MERC 表示,浦那太阳能屋顶消费者无需支付净账单
由人工智能(AI)的进步促进的精确农业已成为现代农业中的一种变革性范式。本评论全面研究了AI技术在精确农业中的整合,以增强可持续性并优化农业实践。本文综合了AI应用程序中的最新研究和发展,涵盖了关键领域,例如作物监测,资源管理,决策支持系统和自动化。采用AI驱动的技术,包括机器学习,计算机视觉和传感器技术,正在通过为农民提供实时数据和可行的见解来重塑传统的农业方法。作物监测应用利用卫星图像,无人机和地面传感器来评估植物健康,检测疾病并优化灌溉策略。AI驱动的决策支持系统使农民能够根据数据驱动的预测,天气预报和历史模式做出明智的选择,从而有助于资源有效的实践并最大程度地减少环境影响。资源管理是可持续农业的关键方面,AI在优化水,肥料和农药的使用方面发挥了关键作用。由AI算法启用的智能灌溉系统,确保精确有效的水分配,减少浪费并促进节水。AI驱动的土壤条件分析可帮助农民量身定制受精习惯,增强营养利用率并最大程度地减少环境径流。该评论还探讨了通过机器人和自动驾驶汽车自动化农业运营中AI的作用。这些技术不仅减轻了劳动力短缺,而且还提高了种植,收获和作物维持的效率。此外,AI的整合在农业中促进了连接性,从而在设备,传感器和农业设备之间实现了无缝的通信。随着精确农业的不断发展,评论突出了挑战和未来的前景。道德考虑因素,数据安全和农村地区的数字鸿沟是需要关注的挑战。此外,本文讨论了进一步研究的潜在途径,强调了跨学科合作的需求,以解决与Precision农业中AI可持续实施相关的复杂问题。本综述提供了AI在精确农业中的变革性影响的全面概述,为当前技术,挑战和未来方向提供了见解。AI的整合不仅提高了生产力和效率,而且还有助于农业实践的长期可持续性,从而在面对不断增长的全球人口时确保粮食安全。
圣雄甘地一直认为“印度的未来在于村庄”,他说服“如果村庄灭亡,印度也会灭亡”。只有通过重建村庄才能实现国家的重建。尽管农业在GDP中的份额下降,但农业仍在雇用该国一半的全部劳动力。可持续的农业实践在确保粮食安全方面发挥着至关重要的作用,通过提高粮食谷物生产系统的生产率,盈利能力和稳定性。有助于粮食安全的一些可持续农业实践是作物轮作,农作物,保护,耕作,耕作,企业和牲畜的多样化,综合有害生物管理(IPM),水有效的灌溉系统,有机农业,有机农业,气候 - 气候作物,种子节省和分享,播种和分享,Harvest,Harvest,Harvest Management,Community Gardens和Urricult,Argrand和Urcriv。随着时间的推移,在同一土地上交替不同农作物有助于改善土壤健康,防止土壤侵蚀,减少昆虫虫和疾病压力并保持生育能力。通过减少或无耕作的做法,减少侵蚀,保存水分并增强土壤中有机物含量,从而最大程度地减少土壤干扰。种植各种农作物并提高多样化的牲畜品种会提高对气候变异性,害虫爆发和市场波动的韧性。结合生物控制,文化实践,抗性品种和最少的农药使用的结合有助于管理害虫,同时最大程度地减少环境影响。通过农业实践环境保护在休耕期间种植农作物可改善土壤的生育能力,防止侵蚀并为牲畜提供额外的草料。避免合成农药和肥料,同时强调天然土壤健康实践会导致更健康的生态系统和更安全的食物。支持当地的粮食生产和分销可减少对远处来源的依赖,并加强区域粮食安全。增强并提倡针对不断发展的弹性农作物品种消除条件支持在不可预测的不可预测的天气波动下持续产量。鼓励农民拯救和交换传统种子有助于保留农作物对当地条件的遗传多样性和适应性。实施诸如梯田,轮廓耕作和缓冲带等实践有助于防止土壤侵蚀并保护有价值的顶部土壤。通过收获后管理实践(如适当的存储,加工和运输)来减少粮食损失,有助于确保更多生产的食品能够吸引消费者。对农民的可持续农业实践问题,现代技术和有效的资源管理培训,有助于更高的收益和更好的粮食安全。鼓励城市地区的小规模农业有助于增加当地的粮食生产,并改善获得新鲜农产品的机会。
圣雄甘地一直认为“印度的未来在于村庄”,他说服“如果村庄灭亡,印度也会灭亡”。只有通过重建村庄才能实现国家的重建。尽管农业在GDP中的份额下降,但农业仍在雇用该国一半的全部劳动力。可持续的农业实践在确保粮食安全方面发挥着至关重要的作用,通过提高粮食谷物生产系统的生产率,盈利能力和稳定性。有助于粮食安全的一些可持续农业实践是作物轮作,农作物,保护,耕作,耕作,企业和牲畜的多样化,综合有害生物管理(IPM),水有效的灌溉系统,有机农业,有机农业,气候 - 气候作物,种子节省和分享,播种和分享,Harvest,Harvest,Harvest Management,Community Gardens和Urricult,Argrand和Urcriv。随着时间的推移,在同一土地上交替不同农作物有助于改善土壤健康,防止土壤侵蚀,减少昆虫虫和疾病压力并保持生育能力。通过减少或无耕作的做法,减少侵蚀,保存水分并增强土壤中有机物含量,从而最大程度地减少土壤干扰。种植各种农作物并提高多样化的牲畜品种会提高对气候变异性,害虫爆发和市场波动的韧性。结合生物控制,文化实践,抗性品种和最少的农药使用的结合有助于管理害虫,同时最大程度地减少环境影响。通过农业实践环境保护在休耕期间种植农作物可改善土壤的生育能力,防止侵蚀并为牲畜提供额外的草料。避免合成农药和肥料,同时强调天然土壤健康实践会导致更健康的生态系统和更安全的食物。支持当地的粮食生产和分销可减少对远处来源的依赖,并加强区域粮食安全。增强并提倡针对不断发展的弹性农作物品种消除条件支持在不可预测的不可预测的天气波动下持续产量。鼓励农民拯救和交换传统种子有助于保留农作物对当地条件的遗传多样性和适应性。实施诸如梯田,轮廓耕作和缓冲带等实践有助于防止土壤侵蚀并保护有价值的顶部土壤。通过收获后管理实践(如适当的存储,加工和运输)来减少粮食损失,有助于确保更多生产的食品能够吸引消费者。对农民的可持续农业实践问题,现代技术和有效的资源管理培训,有助于更高的收益和更好的粮食安全。鼓励城市地区的小规模农业有助于增加当地的粮食生产,并改善获得新鲜农产品的机会。
背景/目的:农业部门是为全球经济做出贡献的每个国家的骨干。技术在农业中的实施带来了革命性的发展。因此,预计全球经济会大大改善农业部门。此外,人工智能(AI)的实施提高了农民的生产力,以解决农民面临的各种挑战。为农业领域开发的各种AI工具包括精确耕作,预测分析,自动化机械,智能灌溉系统,作物和土壤监测,供应链优化,天气预报和牲畜管理。尽管有长期的收益,但在农业中采用AI仍面临一些挑战。投资于实施AI技术的高前期成本使小规模和发展农民很难对AI进行投资。实施上述技术需要技术技能,快速的Internet连接性和更具成本的设备。由于缺乏上述要求,用于农业的AI技术不会到达农民。这导致没有结果的AI资源浪费。考虑到上述问题,提出了适当的简化模型,以促进中小型农民在农业中改善AI技术以改善绩效。它还旨在确定研究差距,这将有助于开发适合最终的模型,例如小规模和中等规模的农民。目的:本文的目的是审查与农业中AI实施有关的各种期刊,并研究与其实施相关的各种问题。设计/方法论/方法:通过从国际和国家期刊,会议,数据库和其他通过Google Scholar和各种搜索引擎访问的资源中收集和检查相关文献来进行系统文献综述。发现/结果:农业部门对每个国家的经济至关重要,已经通过技术,尤其是AI的革命性进步。AI工具,例如精确农业,预测分析和智能灌溉承诺,可以提高生产力并应对各种农业挑战。但是,高昂的实施成本,对新技术的抵抗力以及缺乏必要的基础设施阻碍了小规模和发展中的农民的广泛采用。为了克服这些障碍,提出了一个模型,以有效地支持农民采用AI技术来促进农业绩效。原创性/价值:从各种来源中实施了农业中的AI和ML工具。由于中小型农民在农业中实施AI和ML工具方面面临的最新挑战,该领域需要研究。获得的信息将通过改善现有方案的结果来帮助创建新模型。纸质类型:文献综述。关键字:人工智能(AI),农业,中小型农民,精密农业,预测分析,自动化机械,供应链优化
独立的土地,自然和改编系统(LNA)咨询小组今天发布了第二个且最终的报告,概述了一个实用的框架,以支持动员资产用于弹性和以适应为中心的投资。,即使全球温度升高限制在工业前水平高1.5°C时,英国和其他国家也必须与更频繁和极端的急性天气事件以及海平面上升的慢性风险抗衡。在英国,过去一年中,与天气相关的纪录与房地产保险索赔和最近的风暴导致了多次死亡,对房屋的广泛损失,停电以及有时迫使大部分大西部铁路网络暂停。在海外,图片同样鲜明。加拿大和美国已经忍受了前所未有的野生季节,西班牙的灾难性降雨和潮流量已经夺走了数百人的生命,并可能造成数十亿美元的伤害。消息很明确:没有任何区域不受气候变化的影响,并且适应至关重要。lnas,从绿色技术咨询小组(GTAG)中脱离的任务是为HM政府提供有关如何在英国绿色分类法内发展适应和弹性的建议。在其报告中,LNA提出了一个五步框架,以确定适应性投资并制定标准,以确定其在提供适应性和弹性结果方面的有效性。在没有量化的国家适应目标的情况下,一个精心策划的政府支持的适应分类法可以帮助识别和扩展有效的弹性建筑解决方案。适应是必要的。这样的分类法可以指导财务机构更好地了解身体气候风险,并帮助实际经济公司和投资者在适应性的技术和解决方案中识别和部署机会,从先进的预测工具和水上有效的灌溉系统到自然的解决方案。有希望的是,研究表明,适应解决方案的广泛定义的总回报率比市场高16.3%。通过阐明对适应和弹性的投资的资格,英国绿色分类法可以为财务机构提供他们在规模上进行投资并加快这些挑战需求的信心和指导。到目前为止,没有一个国家还建立了一种适应性分类法,该分类学始于我们需要看到的结果 - 这是一个真正的经济,适应已经存在的气候变化。本文所描述的基于第一个原则的方法旨在做到这一点,提供一个框架来支持动员对弹性和适应性投资的动员。Robert Bradburne博士主席,LNAS咨询小组兼首席科学家,环境局
Toro 公司奴隶制和人口贩运声明 Toro 公司及其子公司(统称“TTC”)强烈反对任何个人或组织(包括其业务合作伙伴)的现代奴隶制。此外,作为一家在全球开展业务的制造商,TTC 致力于遵守所有适用的现代奴隶制透明度法律。本声明中的“现代奴隶制”包括强迫劳动、监狱劳动、契约劳动、抵押劳动、债务奴役、国家强制强迫劳动、人口贩运、童工和其他通常被认为是现代奴隶制的类似行为。本综合声明描述了 TTC 为减轻其业务和供应链中现代奴隶制风险所做的努力,并与 Toro 于 2020 年 11 月 1 日开始并于 2021 年 10 月 31 日结束的财政年度有关。本声明根据加州《供应链透明度法案》、英国《现代奴隶制法案》和澳大利亚《联邦现代奴隶制法案》编制。我们在整个企业中都有与现代奴隶制相关的共同政策和合规程序。但是,并非所有集团公司都受上述法案的约束。为了准备这份联合声明,Toro 公司与本声明涵盖的每个报告实体进行了接触,包括但不限于 Toro UK Limited 和 Toro Australia Group Sales Pty Limited,并咨询了我们拥有或控制的其他实体。我们的业务和供应链 TTC 设计、制造、营销和销售专业草坪维护设备和服务;草坪灌溉系统;园林绿化设备和照明产品;雪和冰管理产品;农业灌溉(“农业灌溉”)系统;租赁、专业和地下施工设备;以及住宅庭院和扫雪机产品。我们的产品通过分销商、经销商、大众零售商、五金零售商、设备租赁中心、家居中心以及线上(直接面向最终用户)网络在全球营销和销售,主要商标包括 Toro®、Ditch Witch®、eXmark®、BOSS®、Ventrac®、American Augers®、Trencor®、Pope®、Subsite®、HammerHead®、Radius®、PERROT®、Hayter®、Unique Lighting Systems®、Irritrol® 和 Lawn-Boy®,其中大部分商标在美国(“US”)和/或我们以此类商标销售产品的美国境外主要国家注册。除了大部分最终组装外,我们还战略性地确定了垂直整合的特定核心制造能力,例如注塑、挤压、焊接、冲压、制造、激光切割、喷漆、机械加工和铝压铸,并选择外部供应商提供其他服务(如适用)。我们与供应商合作设计零部件,与他们签订合同开发工具,随后与这些供应商签订协议,购买使用工具制造的零部件。我们还与第三方制造商签订了一些协议,代表我们制造某些独立的最终产品。TTC 购买商品、零部件和配件,用于我们的制造过程和最终产品或作为独立的最终产品出售。我们在商品、零部件和配件上花费最多的通常是钢铁、铝、石油和天然气基树脂、纸板、铜、铅、橡胶、发动机、变速箱、变速驱动桥、液压系统、电气化组件等,所有这些我们都是从世界各地的多家供应商处购买的。
Abellon 清洁能源 | Abhay Nutrition | Adtech Systems | Aditya Birla Grasim | Amaterasu Lifesciences | AP Organics | Apollo 医院教育与研究基金会 | 应用材料 | ArcheBiologics | Amara Raja Batteries Pvt Ltd | 亚洲涂料 | Autosys Engineering | BL Agro Industries | Bajaj Healthcare | Bannari Amman Sugars | BASF 印度 | Bayer Seed | Beauscape Farms | Bengaluru Allergy Centr | Bharat Forge | Bhat Bio-Tech | Bioinnovations | Bharat Petroleum Corporation Ltd (BPCL) | Birla Carbon India Pvt Ltd | Brichem Sciences | Bayer Crop Science Ltd | Britannia Industries | Cadila Pharmaceuticals I Chemical Resources (CHERESO) | Corteva Agriscience | DCM Shriram Sugar | Dabur | Dorf Ketal Chemicals | Dow Chemical International Pvt Ltd | Eaton Corporation | Encube Ethicals | Envian Engineers | EON Electric | Evolva | Evonik Industries AG | 被忽视疾病研究基金会 | Forbes Marshall | Garment Wash Effectzs | GE 印度技术中心 | GE 汽车 | General Mills 印度 | Godrej & Boyce | 谷歌 | Hella 印度汽车 | HiMedia 实验室 | 印度斯坦联合利华有限公司 | HPCL | Höganäs 印度 | Hugo-de-Vries Biological's | 海得拉巴眼科研究基金会 | IBIDEN | Infosys | 英特尔 | Jai Bharat 口香糖与化学品 | Jain 灌溉系统 | JSW Steel I Kamineni 医院 | Konark 草药和保健 | K-Pack Sysyems | LightMotif 自动化传感器和系统 | Lupin | Lyra 实验室 | Maccaferri 环境解决方案 | Mahindra Electric | Marico | Maxim Crop Sciences | Maxim Integrated | Merkel Haptic Systems | Micromatic Grinding Technologies | 微软研究院 | Mil 实验室 | MNR 牙科学院与医院 | Momentive Performance Materials |变形机器 | MSD Wellcome Trust Hilleman 实验室 | NanoXpert 技术 | Natco 制药 | 国家火电公司(NTPC) | NMDC | 诺基亚 | Nova 表面护理中心 | Novogold 种子 | Nucleus 软件 | Nunhems 印度私人有限公司 | Nuziveedu 种子 | 石油天然气公司(ONGC) | 臭氧研究与应用 | Paragon 工业 | Petrotech | PI 工业 | Piramal | Praj 工业 | Prathista 工业 | 宝洁 | Pulse 制药 | Rallis 印度有限公司 | Reliance 工业有限公司 | 罗伯特·博世 | Rohde 与 Schwarz 印度 I Sahajanand 医疗技术 | Sampurn Agri Ventures I Sanjay Techno Plast | Shakti Vardhak 杂交种子 I Shell 印度市场 | Simco 全球技术与系统 | Skymax 研究与法规 | Skymet 气象服务 | Solar Agrotech | Sree Akzya 染色 Sri Bioaesthetics | ST 微电子 | Strand Life Sciences Suyog Infraspaces | Talga Resources | 塔塔化工 | 塔塔汽车有限公司 | 塔塔钢铁 | 喜马拉雅制药公司 | 旁遮普邦合作牛奶生产商联合会。(牛奶喂养)| Thermax |联合磷化 UPL 有限公司 | Vaata InfraVarsha 生物科学与技术 |世界杂交种子 |下午能源有限公司 | Zim Laboratories 等等。
Acharya,p。,Ghimire,R.,Idowu,O.J.,Shukla,M.K.,2024。在半干旱青贮耕作系统中覆盖种植增强的土壤聚集以及相关的碳和氮储存。catena [https://doi.org/10.1016/j.catena.2024.108264] Bista,D.,Sapkota,S.,Acharya,P.,Acharya,R.,Ghimire,G.,G.,G.,2024。在多元化的半干旱灌溉系统中降低能量和碳足迹。Heliyon [https://doi.org/10.1016/j.heliyon.2024.e27904] Singh,A.,Ghimire,R.,Acharya,P.,2024。 土壤剖面碳固执和养分反应随灌溉草料旋转中的覆盖作物而变化。 土壤和耕作研究[https://doi.org/10.1016/j.still.2024.106020] Acharya,P.,Ghimire,R.,Acosta-Martínez,V.,2024。 在半干旱灌溉的农作物系统中覆盖作物介导的土壤碳储存和土壤健康。 农业,生态系统与环境[https://doi.org/10.1016/j.agee.2023.108813] Adhikari,A。D. 覆盖作物残留质量调节半干旱作物系统中的垃圾分解动力学和土壤碳矿化动力学。 应用土壤生态学[https://doi.org/10.1016/j.apsoil.2023.105160] Paye,W。S.,Lauriault,L.,Acharya,P.,Ghimire,R.,2024。 土壤碳和氮对灌溉退休后对旱地作物的反应。 农艺学期刊[https://doi.org/10.1002/agj2.21523] Acharya,P.,Ghimire,R.,Lehnhoff,E.A,Marsalis,M.A.,2023。Heliyon [https://doi.org/10.1016/j.heliyon.2024.e27904] Singh,A.,Ghimire,R.,Acharya,P.,2024。土壤剖面碳固执和养分反应随灌溉草料旋转中的覆盖作物而变化。土壤和耕作研究[https://doi.org/10.1016/j.still.2024.106020] Acharya,P.,Ghimire,R.,Acosta-Martínez,V.,2024。在半干旱灌溉的农作物系统中覆盖作物介导的土壤碳储存和土壤健康。农业,生态系统与环境[https://doi.org/10.1016/j.agee.2023.108813] Adhikari,A。D.覆盖作物残留质量调节半干旱作物系统中的垃圾分解动力学和土壤碳矿化动力学。应用土壤生态学[https://doi.org/10.1016/j.apsoil.2023.105160] Paye,W。S.,Lauriault,L.,Acharya,P.,Ghimire,R.,2024。土壤碳和氮对灌溉退休后对旱地作物的反应。农艺学期刊[https://doi.org/10.1002/agj2.21523] Acharya,P.,Ghimire,R.,Lehnhoff,E.A,Marsalis,M.A.,2023。涵盖农作物的饲料潜力和随后的高粱青贮饲料产量和营养价值。农艺学期刊[https://doi.org/10.1002/agj2.21334] Acharya,P.,Ghimire,R.,Paye,W。S.,Galguli,A.C.,Delgrosso,S.J.半干旱灌溉裁剪系统中的覆盖农作物的净温室气体平衡。科学报告[https://doi.org/10.1038/s41598-022-16719-w] Paye,W。S.,Acharya,P.,Ghimire,R.,2022年。在半干旱灌溉条件下,饲养高粱的水生产力覆盖了农作物。田间作物研究[https://doi.org/10.1016/j.fcr.2022.108552] Acharya,P.,Ghimire,R.,Cho,Y.土壤剖面碳和氮和农作物对覆盖农作物的反应有限,在有限的冬季小麦 - 高粱休耕中。农业生态系统中的营养循环[https://doi.org/10.1007/s10705-022-10198-1] Paye,W。S.在半干旱灌溉条件下覆盖农作物用水和玉米青贮饲料的生产。农业水管理[https://doi.org/10.1016/j.agwat.2021.107275]