(https://www.meti.go.jp/english/press/2021/0618_002.html)(注3)我们通过水力发电、火力发电、核能发电、FIT发电、可再生能源等方式供电,以及使用可再生能源的非化石燃料能源证书,有效地实现了采购电力100%可再生能源的比例和二氧化碳净零排放。 (注4)CDP是源自英国的国际非政府组织(NGO),为投资者、企业、州、地区和城市运行全球信息披露系统,以管理其环境影响。 (注5)该系统控制与电力用户同一区域内的电池储能系统、热电联产系统和其他分散电源,通过整合来自这些位置的电力,像一个发电厂一样运行。 (注6)涵盖范围1(直接排放)和范围2(间接排放)。 (注7)2022年4月7日新闻稿
《天然气发电的热效率:2019 年更新》工作人员论文简要概述了 2001 年至 2018 年加州发电的总体趋势。该论文详细介绍了过去 18 年来为满足负荷而使用的发电厂类型的变化,并记录了用于火力发电的年度天然气总用量。通过对历史天然气使用情况进行准确评估,该论文支持州政策,即到 2045 年 12 月 31 日,合格的可再生能源资源和零碳资源将为加州终端用户提供 100% 的零售电力,并为所有州机构提供 100% 的电力采购。论文涵盖的主题包括数据收集、发电厂类别、年度发电趋势以及过去两年最热日子每小时峰值负荷的比较。
当今印度的电力行业正经历着重大的技术变革,其中最大的变革是除了火力发电之外还增加了可再生能源发电。印度的国家电力计划预计,到 2031-32 年,可再生电力容量将达到近 600 吉瓦,其中包括 365 吉瓦太阳能和 122 吉瓦风能 Error! Bookmark not defined.。可再生能源 (RE) 也已成为满足能源需求最实惠、最便宜的来源。截至 2023 年 2 月 28 日,印度的可再生能源总容量为 169 吉瓦。虽然到目前为止,初始可再生能源容量已成功整合到电网中,但由于变化性和供需不匹配,进一步的容量增加预计将面临整合挑战。截至 2023 年 3 月,印度现代可再生能源(太阳能和风能)在总发电量中的份额约为 12%,预计到 2031-32 年将增加到约 35% Error! Bookmark not defined.。
当今印度的电力行业正经历着重大的技术变革,其中最大的变革是在火力发电之外增加了可再生能源发电。印度的国家电力计划预计,到 2031-32 年,可再生电力容量将达到近 600 吉瓦,其中包括 365 吉瓦太阳能和 122 吉瓦风能 1 。可再生能源 (RE) 也已成为满足能源需求最实惠、最便宜的来源。截至 2023 年 2 月 28 日,印度的可再生能源总容量为 169 吉瓦。虽然到目前为止,初始可再生能源容量已成功整合到电网中,但由于波动性和供需不匹配,进一步的容量增加预计将面临整合挑战。截至 2023 年 3 月,印度现代可再生能源(太阳能和风能)在总发电量中的份额约为 12%,预计到 2031-32 年将增加到约 35% 1 。
JETP 旨在通过推广伙伴国主导的模式加速印度尼西亚和越南的能源转型,该模式旨在逐步淘汰/减少无减排燃煤发电,并停止发放新许可证和建设新的无减排燃煤电厂。通过这样做,JETP 旨在通过实现以下成果,确保消费者、工人、依赖煤炭地区的弱势群体和公司获得公正、公平和包容的结果。第一个方面与当地经济的多样化有关。它旨在创造高质量的就业机会和区域价值链,同时为劳动力提供教育和职业培训以及再培训和技能提升计划。除了为弱势群体提供社会保护计划外,JETP 还旨在减轻碳密集型行业的脆弱性。这些重要的经济部门包括火力发电、煤炭开采、重工业和运输。第二个方面涉及能源正义,旨在确保低收入群体获得负担得起的电力。最后一个方面是吸引大规模的国内外私人投资,以提高实现上述支柱的能力。
随着风能和太阳能的贡献不断增加,规划人员改变了评估各种资源贡献的方法,以保持可靠性。6,7 风能和太阳能无法完全替代传统的水力发电和火力发电,但它们可以在高峰需求期间提供一些电力。因此,风能和太阳能发电厂会根据其在停电风险最高的时段的贡献能力而“降级”。而且,在不断发展的电网中,风险最高的时段也在发生变化。例如,随着太阳能的部署越来越多,并承担了中午负荷的更大比例,风险最高的时段会转移到当天晚些时候,此时太阳能发电量较少。美国大部分地区尚未达到这一点,但加利福尼亚州已经观察到太阳能满足“净负荷峰值”(总负荷减去风能和太阳能的贡献)的能力大幅下降。系统运营商还需要改变实时平衡供需的方式,以应对这些资源的变化和不确定性,因为一些地区在某些时段已经实现了 70% 的风能和太阳能瞬时发电量。8,9
摘要:超过 100,000 人分散在农村地区或外岛,仍在使用非联网发电系统,例如火力发电。由于依赖化石燃料导致电力成本过高,生态平衡被破坏。然而,就低碳经济而言,岛屿/农村地区的能源转型 (ET) 更快,因为那里的可再生能源潜力非常大。本文介绍了一种可连接农村地区/外岛的可再生微型混合电网系统。本研究论文基于先前的文献,对偏远岛屿/农村地区进行了比较分析。本文确定的业务系统的应用旨在鼓励引入可再生能源 (RE) 并促进岛屿/农村地区的 HRE-MG 利用。本文特别讨论了实现 ET 的先进成功的目标。ET 开发可以涉及政府和私营部门,以支持实现这些目标。此外,必须为某些地区寻找资金来源作为援助的替代方案,并且需要外国投资者。必须建立国际和政府层面的合作,以便有效的政策能够支持地方层面的能力建设。HRE-MG 在岛屿/农村地区的应用适合企业投资可再生能源服务,因为这些地区的可再生能源技术成本和税收优惠价值较低。
未来的电力系统将由小规模发电和配电组成,最终用户将成为本地化能源管理系统的积极参与者,这些系统能够在自由能源市场上互动。软件代理很可能会控制电力资产并共同互动,以决定电网系统的最佳和最安全配置。本文介绍了一种可实时部署的代理设计,其功能包括资源优化、密集计算和适当决策。Jordan 51 总线系统已用于模拟,总发电容量为 4050 MW,其中 230 MW 代表可再生能源。经济分析证明了智能电网技术的使用,并根据 2016 年发电负荷曲线进行了标称液化气 (NLG) 价格和±20% 灵敏度分析。结果显示,采用智能电网技术后,MWh 价格的变化范围在 1% 左右。这些变化主要是由于代理将发电转移到可再生能源发电厂以在高峰时段产生最大电力。因此,由于代理协调以更好地用可再生能源取代昂贵的火力发电,因此在 NLG ± 20% 敏感性分析中都存在积极的经济影响。显然,可再生资源在高峰时段补偿电力并提供经济效益和节约。关键词
