摘要 — 按需提供各种网络服务需要具有快速适应和重新配置能力的敏捷网络。我们提出了一种基于量子计算 (QC) 和整数线性规划 (ILP) 模型的短期网络优化新方法框架,该框架有可能实现实时网络自动化。我们定义了将近乎真实的资源配置 ILP 模型映射到二次无约束二进制优化 (QUBO) 问题的方法,该问题可以在量子退火器 (QA) 上解决。我们专注于三节点网络,使用最先进的量子退火器 D-Wave Advantage™5.2/5.3 评估我们的方法及其可获得的解决方案质量。通过研究退火过程,我们找到了退火配置参数,这些参数可以获得接近经典 ILP 求解器 CPLEX 生成的参考解的可行解。此外,我们研究了网络问题的扩展,并对量子退火器的硬件要求进行了估计,以便能够正确地将 QUBO 问题嵌入到更大的网络中。我们在 D-Wave Advantage™ 上实现了最多 6 个节点的网络的 QUBO 嵌入。根据我们的估计,一个具有 12 到 16 个节点的实际大小的网络需要至少具有 50000 个量子比特或更多量子比特的 QA 硬件。索引术语 — 整数线性规划、网络自动化、光网络、量子退火、量子计算、资源分配
我们评估了量子计算在两个基本查询优化问题(连接顺序优化和多查询优化 (MQO))上的适用性。我们分析了目前基于门的量子系统和量子退火器(两种目前市面上可用的架构)上可以解决的问题维度。首先,我们评估了基于门的系统在 MQO 上的使用情况,MQO 之前已通过量子退火解决。我们表明,与传统计算相反,不同的架构需要进行复杂的调整。此外,我们提出了一种用于连接顺序问题的多步骤重新表述,使其可以在当前量子系统上解决。最后,我们系统地评估了我们对基于门的量子系统和量子退火器的贡献。通过这样做,我们确定了当前局限性的范围,以及量子计算技术对数据库系统的未来潜力。
我们提出了一种替代方法,该方法将模式识别表示为使用退火的二次无约束的二进制优化(QUBO; np-hard概率),这是一种符合目标函数的全局最小值的过程 - 在我们的情况下,是二进制变量而不是二进制变量的二等函数。术语nealing的灵感来自重复加热和冷却的冶金过程,以消除晶格结构中的位错。同样,此处使用的是,退火优化过程使用随机的“热”闪光来找到目标函数的更好结果,并结合了“冷却”,从而可以大大降低接受较差结果的可能性。量子退火基于绝热定理:如果对其作用的扰动很小,并且不足以跨越地面和第一个激发态之间的间隙,则系统将保留在其本征状态。因此,有可能用简单的基态哈密顿式初始化量子退火器,并将其绝热地发展到所需的,复杂的,问题的哈密顿量。进化后,量子弹性(例如隧道)将退火器带入了后者的基态,代表了问题的全球最小解决方案。量子退火的所有步骤均在整个系统上运行,因此所需的总时间原则上与系统大小无关。因此,只要退火器上的问题拟合,总的运行时间应该是恒定的,并且足够大的量子系统(运行一个大问题)应优于基于软件的问题。
摘要 我们描述了 OpenWebSearch 小组参与 CLEF 2024 QuantumClef IR 特征选择轨道的情况。我们提交的运行重点关注以下观察:学习排序模型中特征的重要性在更改训练设置时会发生变化并自相矛盾。为了解决这个问题并确定一个在不同的下游训练过程中具有鲁棒性的特征子集,我们通过在随机选择的特征子集上反复训练模型并在训练模型中测量它们的重要性来引导特征重要性得分。我们确实观察到特征重要性在不同的引导过程中差异很大,并且自相矛盾。我们假设量子退火器可以比模拟退火器更好地探索这种复杂的优化环境。然而,我们发现量子退火器并没有找到产生更有效的学习排序模型的更优解。
我们对量子退火 (QA) 与模拟退火 (SA) 进行了基准测试,重点关注问题嵌入到 D-Wave 量子退火器的不同拓扑上的影响。我们研究的一系列问题是最大基数匹配问题的特别设计实例,这些问题很容易通过经典方法解决,但对于 SA 来说很难,而且实验发现,对于 QA 也不容易。除了使用多个 D-Wave 处理器外,我们还通过数值求解时间相关的薛定谔方程来模拟 QA 过程。我们发现嵌入问题可能比非嵌入问题困难得多,并且某些参数(例如链强度)对于找到最佳解决方案可能非常有影响。因此,找到良好的嵌入和最佳参数值可以大大改善结果。有趣的是,我们发现尽管 SA 在解决非嵌入问题方面取得了成功,但与我们在 D-Wave 量子退火器上取得的成果相比,嵌入版本获得的 SA 结果相当差。
摘要背景:组装任务是测序新生物基因组和研究结构基因组变化中不可或缺的步骤。近年来,下一代测序 (NGS) 方法的蓬勃发展为使全基因组测序成为一种快速可靠的工具(例如用于医学诊断)带来了希望。然而,当前处理算法的缓慢性和计算要求阻碍了这一目标的实现,因此需要开发更高效的算法。一种可能的方法是使用量子计算,但目前还未得到充分探索。结果:我们提出了从头组装算法的概念验证,使用基因组信号处理方法,通过计算 Pearson 相关系数来检测 DNA 读数之间的重叠,并将组装问题表述为优化任务(旅行商问题)。将在经典计算机上执行的计算与结合 CPU 和 QPU 计算的混合方法获得的结果进行了比较。为此,使用了 D-Wave 的量子退火器。实验使用来自模拟器的人工生成的数据和 DNA 读数进行,使用实际生物基因组作为输入序列。据我们所知,这项工作是少数使用实际生物序列研究量子退火器上的从头组装任务的工作之一。结论:我们进行的概念验证表明,使用量子退火器 (QA) 进行从头组装任务可能是经典模型中执行的计算的一个有前途的替代方案。现有设备的当前计算能力需要混合方法(结合 CPU 和 QPU 计算)。下一步可能是开发一种专门用于从头组装任务的混合算法,利用其特异性(例如重叠布局共识图的稀疏性和有界度)。
使用量子计算从叠后地震数据估计地震阻抗 Divakar Vashisth* 和 Rodney Lessard,SLB 软件技术创新中心 摘要 量子计算越来越被认为是地球物理学的一项变革性技术,它有可能显著提高计算能力和效率。这一进步有望以前所未有的速度模拟和处理复杂的地质数据。最近的研究已经开始探索将量子计算方法应用于简化版本的地震反演问题,强调该技术解决现实世界逆问题的能力。本研究的主要目的是通过使用量子计算机从地震轨迹数据估计声阻抗来解决一个现实、可扩展且与业务相关的问题。据我们所知,这是第一次通过量子计算从地震数据预测地震阻抗,并讨论了在量子处理单元 (QPU) 上解决逆问题的优势。在本文中,我们利用 D-Wave 量子退火器来解决叠后地震反演问题,采用了一种新颖的两步工作流程。在第一步中,我们利用量子退火器从地震数据中估计反射率。随后,这些估计的法向入射反射率作为使用相同量子技术预测声阻抗的基础。为了验证我们方法的有效性,我们提供了五个示例,将 D-Wave 量子退火器的阻抗预测与通过模拟退火(传统上用于地震反演的随机全局优化器)获得的阻抗预测并列。值得注意的是,从量子退火器得出的阻抗仅在一个时期内就与真实值紧密匹配,而模拟退火需要 10 个时期才能达到类似的精度。此外,我们的混合求解器中的 QPU 仅花费约 0.08 秒即可估计这些地震阻抗。与混合求解器的经典组件和模拟退火所需的时间相比,这非常高效,后两者均需要超过 10 秒。这凸显了 QPU 可以在不到一秒的时间内完全解决地震逆问题,凸显了量子计算对地球物理学领域的变革性影响。 引言 量子计算是一个新兴领域,它利用量子力学原理来处理信息,为传统计算带来了范式转变。与以比特为信息基本单位的传统计算机相比,量子计算机
我们通过受限的玻尔兹曼机器(RBMS)研究了二进制图像denoing的框架,该机器(RBMS)引入了二次无约束的二进制优化(QUBO)形式(QUBO)形式的降解目标,并且非常适合用于量子退火。通过平衡训练有素的RBM所学的分布与噪音图像派生的罚款术语来实现dieno的目标。假设目标分布已得到很好的近似,我们得出了惩罚参数的统计最佳选择,并进一步提出了经验支持的修改,以使该方法适合该理想主义假设。我们还在其他假设下表明,我们方法获得的denocer映像严格接近无噪声图像的图像比嘈杂的图像更接近无噪声图像。当我们将模型作为图像剥夺模型时,可以将其应用于任何二进制数据。由于QUBO公式非常适合在量子退火器上实现,因此我们在D-Wave Advantage机器上测试模型,并且还通过通过经典的启发式方法近似Qubo溶液来测试对于电流量子退火器太大的数据。
然而,HL-LHC 的覆盖范围依赖于比 LHC 高一个数量级的亮度,这意味着每次光束碰撞时发生的额外质子-质子相互作用的数量(也称为堆积,μ)将增加 3 到 5 倍,达到每次碰撞 140 到 200 次额外的相互作用。因此,HL-LHC 的计算环境将极具挑战性,目前的预测表明,处理数据所需的计算资源将超过预算预测。用于重建带电粒子轨迹的模式识别算法是重建模拟数据和碰撞数据事件的关键挑战。模式识别算法 [5] 可大致分为全局方法或局部方法。全局模式识别方法通过同时处理来自全探测器的所有测量值来寻找轨迹。全局方法的例子包括保角映射或变换方法,如霍夫变换 [6、7] 和神经网络 [8]。局部模式识别方法根据探测器局部区域的测量结果生成轨迹种子,然后搜索其他命中点以完成轨迹候选。局部方法的示例包括轨迹道路和轨迹跟踪方法,例如卡尔曼滤波器 [9-11]。模式识别算法通常在找到种子之后的轨迹重建序列中运行。一旦通过模式识别算法识别出沉积的能量集,就可以通过拟合算法确定轨迹的参数。用于描述轨迹的参数取决于探测器的几何形状,但通常使用五个(如果包含时间信息,则为六个)参数。轨迹参数通常包括动量(与曲率成反比)、描述传播方向的角度以及用于表征起点的撞击参数。为了说明 HL-LHC 所带来的挑战,图 1 显示了每个事件的处理时间与堆积的关系,该图使用了 ATLAS 实验使用基于卡尔曼滤波器的模式识别序列记录的数据。处理时间与 μ 的增加成比例,这是模式识别算法的典型特征。在 HL-LHC 中,μ 的预期值将明显位于曲线的右侧,因此需要大量的 CPU 资源。未来的强子对撞机(例如未来环形对撞机项目中提出的强子-强子对撞机 [ 13 ]),预计会出现更多的堆积,每个事件可能最多增加 1000 次相互作用。由于这一挑战,开发用于高能物理模式识别的新算法和新技术目前是一个非常活跃的发展领域。本文概述了正在进行的研究,以确定量子计算机在未来如何用于模式识别算法。量子计算机最早是在 40 多年前提出的 [14-16],最初的想法是开发一种利用自然界中的量子过程来更好地模拟自然的计算机。十年后,量子算法的发展引起了人们的进一步兴趣,这些算法展示了量子计算机解决经典难题的潜力,包括质数分解 [17] 和搜索算法 [18,19]。第一台量子计算机基于现有的核磁共振技术 [20-22]。最近,我们进入了所谓的噪声中型量子 (NISQ) 时代 [23],量子计算机具有数十个逻辑量子位,可以超越当前经典计算机的能力,尽管受到显著噪声的限制。量子位是经典计算机上用于存储信息的比特的量子类似物。目前可用的量子计算机可分为量子退火器或基于电路的量子计算机。量子退火器旨在解决特定类型的问题:最小化目标函数,由于量子隧穿效应,量子退火有望更快地解决最小化问题。D-Wave 生产目前最多 5000 个量子比特的商用量子退火器 [ 24 ]。基于电路的量子计算机可用于解决更广泛的问题,因此在概念上与当今的数字计算机更相似。它们由使用各种技术由量子比特制成的量子电路组成。目前正在探索的量子比特技术包括超导晶体管、离子阱和拓扑量子比特。例如,IBM量子退火器旨在解决特定类型的问题:最小化目标函数,由于量子隧穿效应,量子退火有望更快地解决最小化问题。D-Wave 生产商用量子退火器,目前最多有 5000 个量子比特 [ 24 ]。基于电路的量子计算机可用于解决更广泛的问题,因此在概念上与当今的数字计算机更相似。它们由使用各种技术由量子比特制成的量子电路组成。目前正在探索的量子比特技术包括超导晶体管、离子阱和拓扑量子比特。例如,IBM量子退火器旨在解决特定类型的问题:最小化目标函数,由于量子隧穿效应,量子退火有望更快地解决最小化问题。D-Wave 生产商用量子退火器,目前最多有 5000 个量子比特 [ 24 ]。基于电路的量子计算机可用于解决更广泛的问题,因此在概念上与当今的数字计算机更相似。它们由使用各种技术由量子比特制成的量子电路组成。目前正在探索的量子比特技术包括超导晶体管、离子阱和拓扑量子比特。例如,IBM
1001 弹药 一个综合术语,指为摧毁或杀死目标而发射、投掷或放置在目标上的射弹、爆炸物等及其部件。它还包括空弹和用于训练目的的弹药。例如,轻武器弹药、火炮弹药、火箭、导弹、炸弹、手榴弹、地雷及其组成的火管、引信、雷管和装药(火药、炸药等)。
