火山灰落遍了火山以西的广阔区域,而根据摄像机监控,火山碎屑密度流(PDC)——热火山气体、火山灰和碎裂岩石的危险混合物——在喷发柱底部产生,并沿着火山口的东南侧流下。据估计,PDC 从山顶火山口流下的最长距离约为 2 至 3.4 公里,位于拉卡斯特拉纳的马索洛格,仍在永久危险区 (PDZ) 的四公里半径范围内。
1 Laboratory of the atmosphere and cyclones (Lacy), UMR 8105 CNRS, University of Reunion, Météo-France, Saint-Denis de la Réunion, 97400, France 2 Commsenslab-Upc, Universitat Politècnica de Catalunya, Barcelona, 08034, Spain 3 Cooperative Institute for Research in Environmental Sciences, University of科罗拉多·博尔德(Colorado Boulder),科罗拉多州博尔德(Colorado Boulder),美国40309,美国4国家海洋和大气管理化学科学实验室,博尔德,科罗拉多州,美国80305,美国5号,巴黎大学,巴黎大学克雷特尔大学大气实验室,巴黎大学,学院意大利卡塔尼亚的Osservatorio Etneo 7 Universe Sciences-Réunion(OSU-R)观测站,Saint-Denis,97400,法国,现在是:NOT:NILU,KJELLER,KJELLER,KJELLER,挪威
火山灰落遍了火山以西的广阔区域,而根据摄像机监控,火山碎屑密度流(PDC)——热火山气体、火山灰和碎裂岩石的危险混合物——在喷发柱底部产生,并沿着火山口的东南侧流下。据估计,PDC 从山顶火山口流下的最长距离约为 2 至 3.4 公里,位于拉卡斯特拉纳的马索洛格,仍在永久危险区 (PDZ) 的四公里半径范围内。
摘要:世界气象组织的年度至少年预测中心每年进行预测,作为区域气候中心,气候前景论坛以及国家气象和水文服务的指导。然而,大型火山喷发(例如1991年的皮纳图波山)的发生将使这些预测无效,并促使生产者改变其预测。为了协助和准备衰老的预测中心,以实现这种情况,世界气候研究计划下的火山反应活动及其在气候(APARC)(APARC)的作用(APARC)和际气候预测项目(DCPP)组织了社区锻炼,以应对2022年4月的假设大型爆发。作为本练习的一部分,使用易于火山溶胶强迫发生器来提供按照单个十年预测模型的配置定制的平流层硫酸盐气溶胶光学特性。参与中心随后从其最初的初始化日期预测了2022 - 26年的预测,在大多数情况下,也从2022年4月初的爆发开始之前,也是两种候选人响应方案。本文介绍了该APARC/DCPP火山响应准备工作的各个方面(Volres-RE),包括假设的火山事件,根据八个贡献中心的两个协议进行了修改的预测,在该练习的协调和执行过程中所学到的经验教训以及对十年级预测社区的建议,以实现对实际的ERUPTIPTIOUTS,以进行upputtiuts upputtion。
当第一批自养植物在火山岛叙尔特塞岛的熔岩砂和火山碎屑中定居下来后,由于有机物的加入,土壤就成了细菌、放线菌和真菌的生长基质。来访的鸟类和风吹来的昆虫以及漂流上岸的植物和木材也为土壤添加了有机物。尤其是在海岸和低地,这些漂移物质为异养生命提供了条件。真菌繁殖体可以和有机物一起被输送到岛上。研究表明,霉菌也可以通过空气传播到叙尔特塞岛。KOLBEINSSON 和 FRIDRIKSSON (1968) 使用开放式培养皿法,在三个地方发现微生物沉降物达到每皿每小时 0.0-1.8 个菌落;在较高的地方发现的微生物比在海平面上少;这些微生物属于各种腐生细菌和几种霉菌。但尚未被鉴定。
更好地了解它们的动态,进而提高我们模拟熔岩流行为的能力。最近开发了新的摄影测量方法,将摄影测量范式从纯方法转变为多学科方法,能够降低火山监测成本并拓宽潜在的应用范围。在这项工作中,我们展示了如何有效地使用多视图和单视图摄影测量方法从对活跃熔岩流进行例行调查期间拍摄的照片中提取准确的定量信息。这些方法的一个有趣的优势是它们可以重复使用以前获取的图像来从过去的喷发中提取新数据。特别是,我们定量重建了 2004-05 年在埃特纳火山形成的熔岩流场的演变,分为五个喷发阶段,从最早的简单熔岩流到大约六个月后的最终复合熔岩场。我们的结果表明,在喷发的第一周,熔岩场形成的特点是熔岩长度增加,遵循幂律增长,而前沿速度也遵循幂律降低。此后,长度几乎保持不变,直到发达的熔岩管系统能够将熔岩排出很长的距离,被熔岩淹没的区域在前 20 天内呈线性增长。最后,我们展示了同喷发 DEM 采集对提高我们的理解可能发挥的关键作用
“现在重要的是要了解地球上影响进化,灭绝,恢复和弹性的生物学和气候过程。然而,过去1亿年来最重要的气候代理数据,可以提供有关此信息的精确信息,在不同地区的及时及时不够同步,这使得了解地球的气候
摘要。充满持久的火山喷发通过气体排放和气溶胶的亚地区产生影响气候。以前的研究,无论是建模还是观察性,都努力量化这些影响并解开它们的自然变异性。然而,由于大型和观察到的火山喷发的稀缺性,我们的理解仍然很斑驳。在这里,我们使用地球系统模型来研究对高纬度,富有兴趣的火山喷发的气候反应,类似于冰岛的2014 - 2015年冰岛冬季爆发,这是喷发季节和大小的函数。结果表明,气候响应是区域性的,并受到不同季节的强烈调节,在夏季表现出中纬度冷却,并在冬季表现出北极变暖。此外,随着硫二氧化硫发射的大小增加,气候反应变得越来越不敏感,对排放强度的变化不敏感,这是2014 - 2015年霍鲁霍隆爆发的20至30倍的喷发的升级。火山喷发通常被认为会导致表面冷却,但我们的结果表明,这是一种过度的简化,尤其是在北极,在北极发现变暖是秋季和冬季的主要反应。
火山喷发具有创建许多不同类型的地形并具有多种形状和尺寸的能力。熔岩和灰烬形成的地形包括盾牌火山,煤渣锥火山,复合火山,熔岩高原和火山口。当熔岩流出并逐渐建造宽阔的山坡时,就会发生盾牌火山。它具有宽阔的底座和平坦的顶部。盾牌火山非常大,它们的喷发不塑性。煤渣锥火山是发现的最小,最常见的火山。当熔岩具有较高的粘度时,它会产生灰烬,煤渣和炸弹,它们都在陡峭,圆形的山丘或小山的通风口周围积聚。复合火山或Stratovolcano是一座高大的圆锥形山,在该山上,熔岩层与一层灰烬交替。他们通常在顶部有一个大火山口。熔岩高原是一个高级别的区域,随着时间的流逝,熔岩从几个裂缝中渗出,然后在冷却和凝固之前走过一段距离,从而建立。火山口是火山山倒塌留下的一个巨大洞。