火星在太阳系中与地球相邻,并具有相似的物理维度和地形,在过去的45亿年中,在太阳系中,行星的出生和演变提供了全面的记录[1,2]。因此,火星探索对于扩大人类居住空间和探索生命的起源至关重要[3]。超过40多个火星勘探任务已在全球实施,超过80%的人未能实现其预期目标。甚至成功降落的火星流浪者都面临着被困在沙坑中或经历机械故障的风险[4]。在20世纪,前苏联和美国发起了火星调查,但未能完成其勘探任务[5]。在21世纪,美国再次发起了核动力火星漫游者,好奇心,并获得了全面的火星环境数据。研究人员发现,火星上存在着脆弱的气氛,这使得可以开发火星无人机来帮助火星漫游者在火星气氛中运作,从而引起了学者的国内和国际关注[6,7]。目前,火星无人机在国外开发的主要包括四种类型:浮游气球[8],固定的翼无人机[9],旋转翼无人机[10]和流动翼无人机[11],如图1所示。关于气球浮游的研究很早就开始了;但是,由于一旦释放而难以控制它们及其有限的感应能力,因此他们没有得到广泛的调查。一旦他们的能量耗尽固定翼无人机,例如ARES [9],只能在高海拔高度释放后执行单个反应。
摘要即使火星行星被认为与地球最相似,但在某些方面仍然有所不同。重力较小。它的大气,气候和地质与地球有些不同。因此,在火星表面进行了几项机器人任务,以找到使行星适用于人类安全的方法。该项目旨在设计火星星球上的第一个人类殖民地。这将是人类生活,工作和探索的新家。这个殖民地将在地球上建立第一个人性化研究中心。它还将通过为人类居住的所有其他所需的设施提供生活住宅,为未来的探险家提供可持续的栖息地。该项目中考虑的空间计划包括居住区,公共社会区,健康区工作区和公用事业区。在项目设计期间考虑了几个关键要素,例如水和氧气,种植(土壤),温度,辐射,压力,风,电源(能源),表面(结构),材料和心理方面。该项目将提供一项全面的研究,以设计合适的定居点,可以在极端环境地点支持安全的日常生活。
建议年级 4 年级 -12 年级 学科领域 地球科学、空间科学、语言艺术 时间线 45 分钟 标准 • 4-ESS1-1. 从岩层模式和岩层化石中识别证据,以支持对地貌随时间变化的解释。 • 4-ESS2-2. 分析和解释地图数据以描述地球特征的模式。 • MS-ESS1-3. 分析和解释数据以确定太阳系中物体的比例属性。 背景 人类想要了解我们的自然环境。熟悉我们的世界很重要。随着时间的推移,地图绘制技术不断发展。我们有键、比例、符号、经纬度坐标来精确定位地球上的确切位置,以及颜色/线条来显示海拔。凭借我们目前对地图技术的了解和阅读地球地图的能力,我们现在能够将其与火星联系起来。从纯粹的观察开始,然后轨道器收集火星图像。现在我们甚至在火星上有了探测器和着陆器。这种侦察与技术相结合,使我们能够突破探索的极限。地图是其中的重要组成部分。它们让我们熟悉陌生的事物,准确地侦察出潜在的着陆点,并让我们能够“先知后知”。
形状的火星从红色沙漠到新的家园形成的火星:角色扮演游戏,是一款基于Terraforming Mars的小说和极端探索游戏,这是Fryx-Games的棋盘游戏。它是在太阳系的人类扩张和殖民地的激动人心和诱人的挑战中。科学,技术,外交和生存被敦促到极限,以克服历史上最大的壮举的风险:将火星从贫瘠的荒原转变为房屋。您在角色扮演游戏的Terraforming Mars中玩谁?球员进入了一个多学科小组的鞋子,他们试图在火星和太阳系殖民地的地形历史上留下自己的印记。有几种专业的原型。作为科学家,技术人,医生,研究人员,探险家,外交官和其他工人,他们协调面对不受欢迎的事件以及红色星球的致命条件,以实现火星新生活的共同利益。多家公司在公元2315年以来由世界政府成立的Terraforming委员会的议定书竞争。,但并非所有人都有兼容的思想和态度,从而导致紧张局势,因为它们沿着走向更大的利益的不同道路。这需要地表委员会存在安全和控制机制,这将毫不犹豫地采取行动保护地Terraform Mars的努力免受转移其道路的人的阴谋和恶作剧。您的角色会是一群探索未知数的殖民者吗?Terraforming委员会研究和支持小组的一部分?紧急小队调查圆顶中的一个奇怪的条件?一个控制或为通过Sev-
可以源自含多达6吨高氯酸盐的原位水。艺术树脂的状态可以吸附233毫克高氯酸盐 /g树脂[7],因此需要25.8吨树脂 - 占总有效载荷能力的很大一部分(100吨)。再生树脂需要输入盐以进行离子交换,这将不容易获得。另一种方法是蒸汽蒸馏,具有20 kWh/吨水的高功率要求[8]。在500 sol连接班级任务中,这需要1000 W平均功率(在理想条件下的太阳能电池板40 m 2的输出)。使用半渗透膜的逆渗透具有较低的功率和易于消耗量的需求,但很容易发生一些盐和其他污染物的膜污染,因此“实践中广泛使用预处理” [9]来避免这些问题。此外,反渗透仅除去90-95%的溶质,因此需要一个复杂的多层系统才能实现高氯酸盐所需的100,000倍降低。上述所有系统还会产生高氯酸盐废物,必须将其运输以将其转移到工作现场,从而浪费珍贵的,硬化的水。
•火星样本返回:持久抽样/缓存漫游车是火星样本返回(MSR)广告系列中的第一回合。在其操作的头两年中,流浪者成功地收集了42个可能的岩石,岩石和大气样本中的21个,它们正在等待火星表面的收集。MSR运动的未来腿将使一名登陆者在毅力附近拿到直升机触地得分,以收集和发射样品从地面到地球返回轨道。这些样本不仅会彻底改变我们对火星的科学理解,而且还将为未来人类任务的系统设计提供信息。在2022年2月,洛克希德·马丁(Lockheed Martin)收到了建立样本返回系统关键要素的合同。此外,拜登政府的2023年NASA预算提案设定了2033年返回样品的目标,比最初计划晚了两年。
名称纪律组织核心团队Cynthia null NESC博士领导LARC Donna DeNna Dempsey技术主管JSC Alan Hobbs博士Alan Hobbs人为因素Arc/ San Jose State University arc/ San Jose State University Foundation(SJSU)Kara Latorella博士LARC Ruthan Lewis Lewis Lewis Dr. Ingalls Industries Terrence Tyson Human Factors ARC Peter Robinson Intelligent Systems ARC Dr. Zhaofeng Huang Reliability and Statistics The Aerospace Corporation Marta Durham Space Flight Operations JSC/KBR Wyle Services, LLC Christopher Niemann Space Flight Operations JSC/KBR Wyle Services, LLC Thera Shear-Tungol Space Flight Operations JSC/KBR Wyle Services, LLC Mr. Andrew Chaikin太空历史学家兼作家Andrew Chaikin LLC学生实习生Megan Dempsey学生实习生佛罗里达州悉尼·休斯·巴尔德(Sydney Hughs Baird Austin Delahunt计划分析师LARC/MTSO BECKI HENDRICKS计划分析师LARC/MTSO评估支持Missy Strickland项目协调员LARC/AMA LINDA BURGESS计划和控制分析师LARC/AMA ERIN MORAN技术编辑LARC/AMA JONAY JONAY CAMPBEL TRARC/AMA JONAY CAMPBELL技术编辑LARC/AS&M