火星气候数据库,MCD版本6.1。E. Millour 1,F。忘记1,A。Spiga 1,T。Pierron 1,A。Bierjon 1,L。Montabone 1.2,F。Lefèvre3,F。Montmessin 3,J.-Y.Chaufray 3,M。A。López-Valverde 4,F.González-Galindo 4,S。R。Lewis 5,P。L。Read 6,M.-C。 Desjean 7,F。Cipriani 8和MCD开发团队,1 LaboratoiredeMétéorologieDynamiqie(LMD),IPSL,SU,SU,Paris,France,millour@lmd.ipsl.ipsl.fr,2 Paneureka,2 Paneureka,Le Bourget-du-lac,France,France at labo at spatials spatials spatial spatials spatials spatial spatials spatial spatial spatial spatial spatial epservians epsers epsers epsers epsers epservians epservians(法国,4个天体物理学研究所(IAA-CSIC),西班牙格拉纳达,西班牙,5个物理科学系,开放大学,米尔顿·凯恩斯,英国米尔顿凯恩斯,6个大气,海洋和行星物理学(AOPP),牛津,牛津,英国,英国,英国,7个中心国家 - 埃斯特·埃斯特(Centials),纽约州,弗朗西斯(cne)荷兰。
简介:未来的火星任务,无论是机器人任务还是载人任务,都将依靠具有增强自主性的探测车来应对火星探索日益复杂的问题。尽管取得了进展,但火星探测车任务的运营管理在很大程度上依赖于持续的人为干预。因此,集成自主机动能力对于减轻地面控制中心的运营负担至关重要。随着探测车能力的进步,包括增强的传感和处理能力,机载实时网络变得至关重要。事实上,探索火星提出了一项复杂的技术挑战,需要管理太空探测车内的众多系统和子系统;这些组件之间的通信对于确保任务成功至关重要。在这种情况下,采用实时网络变得至关重要,以确保关键数据的传输和接收没有延迟或中断。特别是,当前的机载网络技术将无法满足这种日益增长的需求。集成时间敏感网络 (TSN) 架构对于支持自主性和确保可靠的实时数据传输至关重要。这种必要性促使航天器行业考虑使用 TSN 解决方案升级运载火箭和卫星上的机载网络 [1]- [4]。火星探测器的网络也必须遵循同样的趋势,因为 TSN 技术为解决这些任务中与通信相关的挑战提供了强大的解决方案。
行星演化模型(PEM):我们使用的GCM是火星行星气候模型(PCM)[5]。对使用PCM的MARS过去的climentes的长期模拟是困难和成本高昂的,因为它模拟了整个时间尺度的各种过程,从短云微观物理学到长时间的冰川演变。相比之下,PEM着重于火星储层的长期变化,同时通过异步建模方法绕过亚年级变化。PEM算法以两个原则运行。首先,它基于从PCM模拟的两年中计算出的趋势来推断储层进化。它还对某些气候变量进行了随后的改编。第二,Evolution算法在
简介:我们对现代和早期火星的表面温度和压力的合理范围的理解在图1中示意性地捕获。足够温暖的表面以支持早期火星上的液态水,似乎要求至少在1 bar [1]中大气压。由合理的表面温度约束的CO 2相图本身,使其不可能超过10个bar。即使在那些高高的压力下,Kasting [1]表明,早期的火星还需要从CO 2以外的温室气体产生的大量贡献,或者是撞击或地热事件的热辅助,以产生液态水。因此,通常认为压力在这个1-10条范围的低端,有利于温度较高的温度,尽管只有孤立的形态学证据[2]为这一前提提供了先验的支持。
• 事实证明,MOXIE 设计可以从实验室转移到火星,性能不会下降。• MOXIE 超出了生产的开发要求 2 倍,并实现了不可测量的低氧杂质水平。• MOXIE 展示了品质因数,特别是 iASR 和简单的纯度测量,它们将成为未来系统的基准。• MOXIE 通过表征鲜为人知的属性(包括引线和串联电阻、堆栈 ASR 和交叉泄漏)来消除风险。• MOXIE 验证了更安全的操作模式,包括固定电压、阴极压力反馈和电压前馈。• MOXIE 团队开发了准确的性能预测模型。• MOXIE 学生模拟了一个全尺寸、高度节能的系统设计。 • MOXIE 团队证明,在一个完整的系统中,灰尘并不是什么大问题。• 通过专业和公众宣传,MOXIE 向工程界和公众证明了 ISRU 是一种安全、可靠、有效的方法,可以降低载人探索的成本和复杂性。
物流系统包装、处理、运输、准备、储存、跟踪和转移物品和货物。移动系统在月球和火星表面移动机组人员和货物。电力系统为建筑元素生成、储存、调节和分配电力。运输系统将机组人员和货物从地球运送到月球和火星。利用系统支持科学和技术演示。
• NASA 中心:MSFC、LaRC • OGA:AF 土木工程中心、空军特种作战司令部 (AFWERX)、国防创新部门(讨论中)、德克萨斯空军国民警卫队、美国空军 • 学术界:克拉克森大学、德雷克州立大学、爱荷华州立大学、密西西比州立大学、宾夕法尼亚州立大学、辛特格莱斯卡大学、阿拉巴马大学亨茨维尔分校、密西西比大学、田纳西大学诺克斯维尔分校 • 行业:Blue Origin LLC、Holly Shulman 博士、ICON Technology、Jacobs 太空探索集团
摘要:火星的殖民化在开发可持续和有效的运输系统方面构成了前所未有的挑战,以支持解决方案间的连接和资源分配。这项研究对火星菌落提出的两种拟议的运输系统进行了全面评估:基于地面的磁悬浮(Maglev)火车和一个低轨道太空平面。通过模拟模型,我们评估了每个系统的能源消耗,运营和施工成本以及环境影响。Monte Carlo模拟进一步提供了十年来与每种期权相关的成本变异性和财务风险的见解。我们的发现表明,尽管太空平面系统提供了较低的平均成本和降低的财务风险,但Maglev Train具有更大的可扩展性和与火星基础设施开发相结合的潜力。Maglev系统的初始成本较高,还是作为长期殖民地扩张和可持续性的战略资产而出现的,强调了对与火星殖民目标保持一致的运输技术平衡投资的需求。进一步扩展了我们的探索,这项研究介绍了对替代运输技术的先进分析,包括Hyperloop系统,无人机和流浪者,并结合了火星的动态环境建模和增强性学习以进行自主导航。为了增强火星导航模拟的现实主义和复杂性,我们引入了一些重大改进。此分析是火星运输基础设施未来研究和战略规划的基础框架。这些增强功能集中在包括动态大气条件的包含,诸如陨石坑和岩石等地形特异性障碍的模拟以及引入群体智能方法以同时导航多个无人机。
1. 资助机会描述 - 概要 月球到火星探索系统和居住 (M2M X-Hab) 2025 学术创新挑战赛是一项大学级挑战赛,旨在与大学建立战略伙伴关系和合作关系。该比赛旨在帮助弥补战略知识差距,并增加与 NASA 愿景和任务相关的能力和技术风险降低方面的知识。该竞赛旨在与高年级和研究生级别的设计课程相结合,这些课程强调动手设计、研究、开发和制造功能原型子系统,以实现太空栖息地和深空探索任务的功能。NASA 将通过赞助大学开发创新概念和技术而直接受益于该挑战赛,这将产生可应用于探索的新颖想法和解决方案。美国宇航局的探索能力 (EC) 计划将提供多个奖项,每个奖项的奖金为 13,000 至 50,000 美元,用于设计和生产大学团队根据其兴趣和专业知识提出的 NASA 感兴趣的研究或功能产品(参见第 3.2 节,M2M X-Hab 提案主题列表)。大学团队制作的原型(示例如图 1 所示)可以集成到现有的 NASA 建造的操作原型中。有兴趣参与的大学将提交 M2M X-Hab 提案,该提案将由技术专家审查;随后的筛选将决定哪些项目将获得资助。M2M X-Hab 大学团队将被要求在 2024 年 5 月完成他们的产品,以供 NASA EC 导师评估。大学可以组成合作,作为一个单一的分布式项目团队来运作。
本文介绍了一种进行全球本地化的新型船上方法,其中许多已经成功地证明了毅力。我们的概括技术使用修改后的人口普查转换,以实现稳健和实用的子米全球本地化精度,其性能与人为指导的本地化相匹配,从前两年半的任务中,平均不到0.5米以内,没有异常值。我们使用安装在毅力漫游器中的Ingenuity直升机基站上的快速处理器来执行本地化。它最初是为了与创造力进行协调交流。这项工作开发了界面和缓解辐射方法,使其可以用作Rover的协调员。该系统旨在限制操作的影响,并且不需要每日投入到Rover操作员,而不是是否执行全局本地化,但如果需要,也允许战略配置选项。我们讨论了从开发和部署这项新技术在飞行任务中所汲取的经验教训,并描述全球本地化如何增加科学回报并改变行星移动机器人的导航方式。