火星的水历史是理解类似地球的行星进化的基础。水作为原子逸出到空间,氢原子的逃逸速度比氘升高,使剩余的D/H比增加了。目前的比率反映了火星总损失。观察火星大气和挥发性进化(Maven)和哈勃太空望远镜(HST)航天器可为H和D提供原子密度,并为H和D的逃生速率。在观察到的每个火星年份附近的大幅增长都与水蒸气的强烈上升相稳定。 短期变化还需要进行热逃逸之外的过程,这可能来自大气动力学和超热原子。 包括从热原子中逃脱的,H和D迅速逃脱,逃生通量受到较低大气的重新调整的限制。 在此范式中,逃脱了水,逃脱原子的D/H比由上升的水蒸气和大气动力学来确定,而不是原子逃生的具体细节。观察火星大气和挥发性进化(Maven)和哈勃太空望远镜(HST)航天器可为H和D提供原子密度,并为H和D的逃生速率。在观察到的每个火星年份附近的大幅增长都与水蒸气的强烈上升相稳定。短期变化还需要进行热逃逸之外的过程,这可能来自大气动力学和超热原子。包括从热原子中逃脱的,H和D迅速逃脱,逃生通量受到较低大气的重新调整的限制。在此范式中,逃脱了水,逃脱原子的D/H比由上升的水蒸气和大气动力学来确定,而不是原子逃生的具体细节。
MARS Express上的Omega光谱仪获得了对火星肢体的几种观察,这些观察仪仍未得到探索。在这里,我们根据火星大气灰尘的丰度和大小来探讨这些数据的信息内容。我们通过应用全球散射蒙特卡洛1D辐射转移代码来接近灰尘检索,以建模0.5 - 2.5μm光谱范围(VNIR和SWIR OMEGA通道),以使粉尘有效半径和数量密度变化在大约之间。8和50公里。 这是该方法第一次应用于欧米茄肢体数据。因此,我们仅介绍三个研究案例,其中水冰低于可检测性水平,以便将未来更广泛应用之前的方法论问题,假设和表现重点放在。 该模型完全包含多种散射效应,这些散射效应已知是导致在不同高度和表面上采用的肢体之间的耦合。 开发了表面反射率的延长的三维建模,形成了肢体光谱的表面晶体。 发现VNIR通道可用于降低辐射转移溶液的退化。 在15至30 km之间产生0.85±0.15μm(对应于模态半径〜0.3μm的模态R m m 〜0.3μm)的尘埃垂直分布,与全球循环模型(GCM)一致,但在模型中的模型预测中,与模型相比的一个级数相当一致,但与模型之间的模型(MC)相当吻合(GCMS),这是一个模型和MARS的clls clls clls clls clls clls clys的clains。8和50公里。这是该方法第一次应用于欧米茄肢体数据。因此,我们仅介绍三个研究案例,其中水冰低于可检测性水平,以便将未来更广泛应用之前的方法论问题,假设和表现重点放在。该模型完全包含多种散射效应,这些散射效应已知是导致在不同高度和表面上采用的肢体之间的耦合。开发了表面反射率的延长的三维建模,形成了肢体光谱的表面晶体。发现VNIR通道可用于降低辐射转移溶液的退化。在15至30 km之间产生0.85±0.15μm(对应于模态半径〜0.3μm的模态R m m 〜0.3μm)的尘埃垂直分布,与全球循环模型(GCM)一致,但在模型中的模型预测中,与模型相比的一个级数相当一致,但与模型之间的模型(MC)相当吻合(GCMS),这是一个模型和MARS的clls clls clls clls clls clls clys的clains。实际上与MCS数据达成了总体协议,在一种情况下,欧米茄退休的尘埃与Hellas Basin的当地风暴兼容。在火星气候数据库中没有很好地表示,该数据库提供了每月平均统计数据。我们的结果证明了欧米茄肢体数据在定量上有助于火星尘埃研究的能力,尽管需要在探测的光谱范围内准确地对多个散射进行准确模拟多个散射,但仍需要进行较复杂且缓慢的辐射转移计算方案。在整个Omega肢体数据集中,理想的检索方法的理想应用也有助于评估当地沙尘暴的发生,需要进一步的工作,旨在包括水冰气溶胶和可能的热发射。是使用蒙特卡洛建模方法对欧米茄肢体数据进行的首次尝试,这项工作代表了一种有用的基准测试,用于更快,虽然准确,但较不准确,辐射转移模型。
摘要在火星大气中检测氯化氢(HCL)是Exomars痕量气轨道(TGO)任务的主要目标之一。使用大气化学套件中红外通道(ACS MIR)发现其发现的季节性独特,并可能与灰尘活动联系起来。本文是一项研究的第2部分,该研究通过比较用TGO与MARS气候声音(MCS)测量的TGO与灰尘和水冰不相处进行比较,研究了HCL和气溶胶之间的联系。在第1部分中,我们显示并比较了HCl,水蒸气,温度,粉尘不透明度和水冰不透明度的季节性演变,整个Mars年34 - 36年(太阳纵向180°–360°)34-36岁。在第2部分中,我们研究了每个数量和臭氧之间垂直分布的定量相关性。我们表明,HCl和水蒸气之间存在很强的正相关,这是由于HCl与水蒸气光解产品反应时HCl的快速光化学生产速率所致。我们还显示出水蒸气和温度之间的正相关性,但无法显示温度与HCl之间的任何相关性。灰尘和水冰的不透明与灰尘和水蒸气之间存在弱相关性,但灰尘和HCL之间的相关性仅相关。我们讨论了可能的来源和下沉,鉴于分布式间隔,HCl和水冰之间的相互作用最有可能。
火星大气和挥发性进化任务(Maven)是NASA航天器,自2014年以来一直在火星上绕行。火星的气氛和波动的进化使命团队已经建立了当前的最佳实践,以加强多样性,公平,包容性和可及性(DEIA)倡议;有许多多样性轴,本文并不关注多样性的特定方面,而是专注于任务特定的包容性方法。我们介绍了过去和现在的方法,以及未来的计划和改进领域,以继续我们的努力,以最大限度地提高对火星气氛和挥发性进化使命团队及其工作环境的融合和参与。本文提出的方法适用于太空物理和行星科学社区以及任何大型科学或任务团队。
摘要 —新太空时代的到来增加了太空通信流量,公共太空机构和私人公司牵头开展了新的太空任务。在不久的将来,火星殖民也是载人任务的目标。由于地球和火星附近的太空流量增加,带宽变得拥挤不堪。此外,当前任务的下行链路性能在延迟和数据速率方面并不令人满意。因此,为了满足日益增长的空间链路需求,本研究提出了太赫兹波段(0.1-10 THz)无线通信。与此相符,我们讨论了实现 THz 波段空间链路所带来的主要挑战以及可能的解决方案。此外,我们模拟了火星大气晴朗和沙尘暴严重的火星-空间 THz 链路,以表明即使在最恶劣的条件下,火星通信流量也可以获得较大的带宽。
为了回答这些大问题,我们已派出机器人任务去探索我们的太阳系和我们自己以外的行星系统。NASA 最近的飞行任务包括 2015 年新视野号飞越冥王星、黎明号任务探索矮行星谷神星和小行星灶神星,以及 MAVEN 正在进行的火星大气和气候调查。持续飞行的任务包括几个火星轨道器以及探索火星地质历史的好奇号和机遇号探测器。开普勒任务创造了有关围绕其他恒星运行的行星的宝贵数据,这些数据仍在被挖掘。其他国家已派出机器人任务前往月球、金星和火星,并正在计划这些任务。2016 年,NASA 的朱诺号任务将抵达木星,对木星进行研究
•火星是来自太阳的第四行星(地球是第三个行星),比地球收到的太阳能少约44%。•火星大约是地球大小的一半。•火星上的重力约为地球的三分之一,因此您的重量约为1/3。•火星日(称为Sol)为24小时,长37分钟。火星年为687地球日(大约2个地球年)。•火星表面可以分为两个半球。北半球的海拔较低,表面在地质上是年轻的火山平原。南半球的海拔高度较高,表面是较旧的高原。•火星大气非常薄,类似于200,000英尺的地球,并且主要是Co 2。•火星非常冷,平均温度为-70度,尽管温度可能从-200到+70度不等。•火星非常干。由于低大气压,表面没有液态水。地球和火星:什么相似?