所使用的材料: - 电池,电机,火柴盒,feviquick,涉及的小型粉丝原理: - 拿一个火柴盒,一些火柴棒与实验的匹配棒描述一起排列了支架: - 电动风扇具有移动叶片的电动机,该电动机可移动刀片,这些刀片连接到中央旋转。他们配备了电池组,该电池组可以在充电时存储能量。然后使用此存储的能量在没有电能的情况下在有时运行风扇叶片。创新性: - HW电池电机技术的第一个超级节能吊扇电源。
光束质量,并可以使用光电二极管捕获和分析反射。几个空间分布的微型激光器扫描周围空气中的颗粒,光电二极管测量返回光束的干涉,系统计算发现的空气颗粒的大小和数量。测量过程称为 SMI(自混合干涉)。由于测量是纯光学的,因此无需直接接触空气 - VCSEL 受到小窗格的保护。也不需要用于测量的吸入空气的风扇 - 因此传感器完全无噪音工作,并且无需清洁或维修。通过这种新的测量方法,传感器的体积可以缩小到只有几毫米,使其比所有以前的细尘传感器小 450 倍。博世 Sensortec 的 Peter Ostertag 很高兴:“别在意火柴盒了,新传感器只有火柴头那么大。”该技术使抽油烟机能够在烹饪过程中产生过多细尘时自动调节功率。或者当建筑物中的细尘传感器发出警报时启动通风系统。
电负性电感耦合等离子体 (ICP) 用于微电子工业中半导体制造的导体蚀刻。天线功率和偏置电压的脉冲化提供了额外的控制,以优化等离子体 - 表面相互作用。然而,由于在前一次余辉结束时电子密度较低,因此脉冲 ICP 在功率脉冲开始时易受电容到电感模式转变的影响。电容 (E) 到电感 (H) 模式的转变对前一次余辉结束时等离子体的空间结构、电路(火柴盒)设置、操作条件和反应器配置(包括天线几何形状)很敏感。在本文中,我们讨论了通过计算研究的结果,研究了在 Ar/Cl 2 和 Ar/O 2 气体混合物中维持的脉冲 ICP 中的 E - H 跃迁,同时改变操作条件,包括气体混合物、脉冲重复频率、功率脉冲的占空比和天线几何形状。在 Ar/Cl 2 混合气体中维持的脉冲 ICP 容易发生显著的 E – H 跃迁,这是因为余辉期间与 Cl 2 发生热解离附着反应,从而降低了预脉冲电子密度。这些突然的 E – H 跃迁会从等离子体边界(尤其是天线下方)形成的鞘层发射静电波。在 Ar/O 2 混合气体中观察到的更平滑的 E – H 跃迁是由于缺乏对 O 2 的热电子附着反应,导致功率脉冲开始时的电子密度更高。讨论了入射到晶片和天线下方的介电窗口上的离子能量和角度分布 (IEAD)。天线的形状影响 E – H 跃迁和 IEAD 的严重程度,天线具有面向等离子体的较大表面积,会产生较大的电容耦合。通过将计算出的电子密度与实验测量值进行比较来验证模型。