方法喷射火和碳氢化合物火灾喷射火标准 ISO 22899-1 和 -3 喷射火标准 ISO 22899-1:2021 包括模拟易燃气体、加压液化气体或闪蒸液体燃料高压释放产生的热负荷和机械负荷。关于标准 ISO 22899-3,它描述了一种扩展的测试方法,用于确定被动防火材料和系统或关键过程控制设备的喷射火抵抗力。它表明了 PFP 材料或设备在严重喷射火中的表现,这种喷射火可以产生 350 kW/m² 的持续热通量。
Ambrosia Vincent(NASA-AMES,美国) Anaya Jesus Adolfo(麦德林大学,哥伦比亚) Arino Oliver(欧空局,欧盟) Arino Olivier(欧空局) Bartalev Sergey(俄罗斯空间研究所) Boschetti Luigi(爱达荷大学,欧盟)美国) 卡尔法皮特拉·卡洛 (CNR-IBAF) 布里克·奥利维尔 (BRGM) Chuvieco Emilio(西班牙阿尔卡拉大学) Crespi Mattia(La Sapienza) Frost Phillip CSIR(南非梅拉卡) Ghermandi Luciana(Conicet) Gitas Ioannis(希腊塞萨洛尼基亚里士多德大学) Jappiot Marielle (法国 IRSTEA) Juan de la Riva(西班牙萨拉戈萨大学) Katagis Thomas(希腊塞萨洛尼基亚里士多德大学) Koutsias Nikos(帕特雷大学) Lasaponara Rosa(意大利 IMAA-CNR) Loporto Antonio (CNR-IRSA) Lynham Tim(加拿大自然资源部、加拿大) 梅克伦堡 Susanne (ESA) Mirek Trnka (GCRI) Mitri George(巴拉曼大学,黎巴嫩) Pasqui Massimiliano (CNR-IBIMET) Pereira Jose Miguel(里斯本大学,葡萄牙) Petropulos George (ESA) Provenzale Antonello (CNR-IGG) CSIC – 经济地理与人口学研究所,西班牙)罗伊·大卫(JRC,欧盟) Sarti Francesco (ESA) Stavrakoudis Dimitrios(希腊塞萨洛尼基亚里士多德大学) Stephen Plummer (ESA) Stroppiana Daniela(IREA-CNR,意大利) Tanase Mihai(澳大利亚墨尔本大学) Tansey Kevin(莱斯特大学,英国)塔伦蒂诺
国际森林火灾新闻 (IFFN) No.37 (2008 年 1 月 - 12 月),第 88-102 页 ISSN 1029-0864 (网络) 德国勃兰登堡州森林火灾管理信息和决策支持系统的创新概念模型 摘要 德国自然灾害研究网络森林火灾集群内进行的研究和开发建立在一系列单独发展的概念之上,这些概念整合在一个合作研究项目中。森林火灾集群负责三个主要组成部分。第一个组成部分包括一个创新的概念模型,用于火灾信息系统和决策支持,用于德国勃兰登堡州松树林野火的预警、监测、信息管理和模拟。第二个组成部分提供了本地适用系统与全球火灾监测中心 (GFMC) 提供的全球火灾信息系统之间的链接。第三部分包括对区域气候变化导致的火灾发生的历史和未来趋势进行建模,由波茨坦气候影响研究所 (PIK) 的相关项目实施,并单独发布。第一部分由许多不同的模块组成。首先,它包括由火灾生态学研究小组实施的已建立的火灾行为模拟模型 (BEHAVE、FARSITE)。首次将火灾行为模型应用于德国东部大陆松树林的具体条件,包括散布的荒地,这些荒地在景观层面上构成了野火的重要载体。这些森林的特征对于欧亚大陆温带半北半球松树林来说非常典型。其次,它包括由德国航空航天中心 (DLR) 实施的火灾探测组件 (自动火灾探测系统 - AWFS)。AWFS 的开发满足了快速、经济高效和可靠的火灾探测系统的要求。第三,它包括由德国气象局 (DWD) 实施的火灾危险评级和预报系统。国家火灾危险评级系统在项目生命周期内得到了巩固。在研究项目期间,全球火灾监测中心 (GFMC) 的工作构成了从国家到国际层面的纽带。研究项目的附加值是各个研究项目的相互支持,并最终合并为一个全面的火灾管理决策支持工具。1.该研究项目获得的有关在活跃野火管理中卫星遥感信息的操作应用的见解将有助于开发急需的操作空间火灾系统。关键词:森林火灾、野火、决策支持、燃料分类、火灾行为、火灾天气、火灾探测、火灾建模、调度、遥感。简介 目前,德国勃兰登堡发生森林火灾的可能性很高,部分原因是降水量低、沙质土壤持水能力低以及普遍易燃的松树林的火灾危险,由于气候变化,这种可能性可能会进一步增加(Thonicke 和 Cramer,2006 年)。德国自然灾害研究网络 (DFNK) 内的“森林火灾”集群分析当前的火灾危险,并提供用于野火响应的高级操作决策支持所需的工具。该集群研究有三个主要组成部分。第一部分包括一个创新的概念模型,用于火灾信息系统和决策支持,用于德国勃兰登堡州松树林野火的预警、监测、信息管理和模拟。该组件包括由火灾生态学研究小组实施的已建立的火灾行为模拟模型 (BEHAVE、FARSITE)、由德国航空航天中心 (DLR) 实施的火灾探测组件 (自动火灾探测系统 - AWFS) 以及由德国气象局 (DWD) 实施的火灾危险评级和预报系统。第二部分提供本地
摘要:- 在机场发生的所有类型的事故中,火灾和爆炸一直是对人员安全和所有飞机生存能力的最大威胁,无论是在和平时期还是在作战行动中。在本文中,我们讨论了火灾事故的统计数据、这些事故的原因以及每个机场现有的防火设施或技术。我们还对机场和飞机的重大火灾事故进行了案例研究。在对案例研究进行详细分析后,我们讨论了政府可以采取的一些措施来改善机场和飞机的防火和安全,以确保所有乘客、机场工作人员和机组人员的安全。
我要感谢我的导师、小组成员和委员会成员对我完成这项工作的大力支持。如果没有导师的指导、小组伙伴和朋友的帮助以及家人的支持,我不可能完成我的博士论文。我要向我的主要导师 Case 博士表示最深切的谢意。感谢您在这项工作期间为我提供宝贵的建议。我非常感谢您对我研究中所有问题的耐心和指导。作为导师,您不仅帮助我提高实验技能和加深我对铝研究的理解,还帮助我扩展了我在材料科学和有限元分析方面的背景。您面对困难和解决问题的积极态度和智慧也将使我受益匪浅。我也非常感谢我的共同导师 Lattimer 博士。感谢您将我带入热机械材料响应领域。您在热分析方面的丰富经验为我在实验设计和微观结构分析方面提供了有效的指导。作为一名工程师,您的专业严谨性在我整个研究生学习期间给我留下了深刻的印象,并将帮助我在未来成长为一名合格的工程师。Patrick,感谢您这些年来成为我最有帮助的同事和朋友;您为我的研究提供了许多宝贵的建议。我非常感谢您帮助我如何使用所有实验设备,并在我遇到问题时及时为我提供建议。您对追求知识和解决问题的执着也给我留下了深刻的印象并激励我做得更好。最后,我要感谢 Jessica、Nathan 和 Christian 对我的初始测试设置、DIC 测试系统和有限元模型的帮助。我还要感谢 Ben、Bilel 和 Roozbeh,你们珍贵的友谊对我来说是无可替代的。与你们一起工作给我的研究生学习带来了非常愉快的经历。
4.2 分别表明,上层温度和气体种类不均匀,并且对于通风不足且上层温度较高的火灾,上层氧气耗尽。对于 HRR 超过 400 kW (<^g > 2) 的火灾,一氧化碳浓度高达 3.5
可再生能源技术,包括风能、大规模太阳能和电池存储,正在维多利亚州乡村地区迅速开发和实施。创新速度的加快给应急响应人员和社区带来了新的复杂风险,特别是在电气、化学和景观风险交织的地方。在规划阶段,有机会通过设施设计识别和减轻火灾风险,以便在设施的建设和运营阶段实现安全有效的应急响应。乡村消防局 (CFA) 与行业和监管机构合作制定了可再生能源设施设计指南和模型要求,以支持设施设计人员和运营商考虑和减轻火灾风险。从最近发生的大型可再生能源设施火灾中获得的运营知识以及在评估维多利亚州乡村地区数百个可再生能源开发项目中获得的知识构成了第三版指南的基础。虽然这些是在维多利亚州的背景下制定的,但 CFA 的专业知识和指南已被寻求用于支持澳大利亚和国际可再生能源设施的消防安全。
本文档不打算用于安装目的。在准备本文档时都已采取所有护理,但是对于其中的信息而言,不承担任何责任。设计功能可以更改或修改,而无需事先通知。有关更多信息,请联系Notifier。
随着全球储能部署的增加,为了提高风能和太阳能等可再生能源的使用效率,对储能火灾风险的关注度正在提高。这并不一定是因为储能火灾事件在增加。缺乏详细说明全球储能火灾发生情况的全面数据。总部位于加州的电力研究所编制的数据库(其中包括有关公用事业和 C&I 规模储能故障事件的信息,这些信息是公开的)显示,截至 2023 年 7 月底,2023 年发生了 6 起“储能故障事件”,2022 年发生了 12 起,2021 年发生了 10 起,2020 年发生了 4 起,2019 年发生了 8 起,2018 年发生了 16 起。5 虽然这个数据集并不全面,但表明近年来储能火灾事件实际上有所减少。储能行业的问题在于,当发生火灾时,