火焰加速 (FA) 和爆燃-爆轰转变 (DDT) 是严重事故中的重要现象,因为它们会极大地影响氢气燃烧序列的最大载荷以及随之而来的结构损坏。氢气缓解的最终目标是设计出允许操作员避免 FA 和 DDT 的对策。在目前的核电站中,火焰速度超过 100 m/s 左右会危及主要内部结构的承载能力。原则上,可以建造新的安全壳设计来承载更高的动态载荷,但是,这会增加成本。要判断快速火焰和 DDT 的可能性,必须了解其原因和潜在过程。然后可以推导出可用于三维数值安全壳模拟的标准,测试氢气缓解方法的有效性,以确定 FA 甚至 DDT 是否可能。
FZJ-3 REKO-3 流动反应器 强制流动条件下的 H2 重组 FZJ-4 REKO-4(在建) 压力容器 自然流动条件下的 H2 重组 FZK-1 A1 容器 圆柱形容器 湍流燃烧和爆轰,机械结构完整性 FZK-2 A3 容器 圆柱形容器 湍流燃烧和爆轰,通风爆炸,H2 分布 FZK-3 A6 容器 圆柱形容器 湍流燃烧和爆轰,机械结构完整性 FZK-4 12 米爆轰管 (DT) 圆柱管 湍流燃烧、DDT 和稳态爆轰,化学动力学 FZK-5 流动测试室 (TC) 矩形室通风燃烧和爆轰;H2 分布,通风系统测试。 FZK-6 部分通风爆炸管 (PET) 带可变开口的圆柱管 通风爆炸,湍流。火焰传播、火焰加速和 DDT FZK-7 A8 容器 圆柱形容器 湍流燃烧和爆轰、通风爆炸、H2 分布 FZK-8 爆炸弹 球形容器 可燃性极限、最小点火能量、层流火焰速度、化学 FZK-9 HyJet 水平/垂直氢气喷射 加压容器中的氢气释放、氢气浓度和 GC-1 168 m³ 开放式几何结构(内部有障碍物) 爆炸容器在开放、拥挤的几何形状中的爆炸 GC-2 1:3.2 比例海上模块爆炸容器在真实几何形状中的通风爆炸