本报告的一部分没有构成,或不得构成,出售或要求购买公司或任何其他实体证券的要约。本报告不打算作为对投资者或潜在投资者的建议,也不考虑任何投资者的投资目标,税收注意事项,财务状况或需求。本报告和本报告中包含的信息未通过参考纳入,也不属于出售或征集报价的任何要约的一部分,该要约根据根据1933年注册的任何发行或任何豁免1933年的证券法。所有投资者都应将这些因素考虑在决定是否合适时与他们选择的财务,税收和法律顾问协商。
Onward 是一家现代化智库,其使命是开发大胆而实用的想法,以促进英国各地的经济机会并加强社区。我们不隶属于任何政党,但信奉主流保守主义。我们承认市场的价值并支持政府可以做的好事,并相信强大的社会是两者的基础。我们希望抓住未来的机遇,同时保留过去积累的知识。我们相信大多数人勤奋、有抱负且体面,但许多人没有机会发挥自己的潜力。我们的目标是通过直接与普通民众合作并制定切实可行的政策来满足整个国家的需求:年轻人和老年人;城市和农村;英国各地——尤其是威斯敏斯特被忽视或忽略的地方。 Onward 是一家独立的非营利智库,在英格兰和威尔士注册(公司注册号 11326052)。
标题为“开发3D印刷的立方体卫星”的项目,用于测量气候条件,以确定2021年9月至2022年4月在我们的监督下的火箭轨迹。
过去,火箭的每个部件都用于将卫星和航天飞机送入轨道,仅供一次性使用。通常,在火箭第一级被发射后,火箭第一级会坠落到地球表面,在大气层中燃烧并被摧毁。可重复使用的火箭是解决这一困境的一步。SpaceX 是一家领先的可重复使用火箭发明公司,它成功开发了能够进行多次发射的火箭。能够重复使用火箭是一项艰巨的任务,需要经过许多步骤。SpaceX 致力于通过提供高可靠性、低成本的发射服务来彻底改变太空方式。它目前为猎鹰 9 号和猎鹰 9 号重型运载火箭以及龙飞船等商业航班提供发射服务。这提供了与猎鹰 9 号火箭相关的最新发展和进步。
摘要 可重复使用运载火箭 (RLV) 正逐渐成为降低太空准入成本的解决方案,并带来突破性太空应用带来的潜在好处。虽然太空是解决全球问题的理想平台,但它也带来了“适应-缓解困境”。运载火箭是唯一直接向大气层各层排放的人造物体,可重复使用性可能会带来额外的负担。虽然它可以通过回收主要部件来确保材料的合理使用,但其相对于等效一次性运载火箭 (ELV) 的潜在可持续性收益尚未量化。因此,正确理解这些对于确保可持续的太空运输设计选择至关重要。本研究回顾了目前对运载火箭环境影响和生态设计的知识状态,然后介绍了第一阶段可重复使用的不同技术的初步生命周期和大气影响评估。可重复使用性表明材料资源消耗可能在早期减少,这与推进剂选择和回收策略无关。就气候强迫而言,仅当假设氢氧、氨氧技术实现完全碳中性推进剂生产,而如果烟尘产量保持在可持续限度以下,甲氧可能实现碳中性推进剂生产,可重复使用性才是有益的。执行空中捕获回收的 VTHL 也表现出降低的气候强迫潜力。据估计,与 ELV 相比,VTVL 运载器的平流层臭氧消耗潜能将增加 18-34%,VTHL 则将增加 12-16%。此外,还发现混合比、飞行剖面、分级条件和空气动力学能力具有高敏感性,需要采用更高保真度的设计方法进行详细评估。据估计,未来大规模空间活动的发射影响也不再可以忽略不计,尽管各种设计方案中都存在一些缓解余地,而且近期将气候变化成本内部化的监管发展可能会显著影响 RLV 的商业案例。此外,高空大气影响,尤其是烟尘排放的影响,似乎主导了潜在的生命周期影响和不确定性,尤其是对于以碳氢化合物为燃料的运载火箭。这进一步加剧了基于航空和地面排放的常用但不合适的加权。这些可能会对绝对和相对比较产生重大影响,因此,必须谨慎对待本研究的结果。未来的研究应采用最先进的大气建模和适当的方法来衡量各个生命周期阶段,从而实现缓解设计,同时避免负担转移。
反应灵敏的火力,提供远程精确打击能力 • 射程超过 400 公里 • 带有全球定位系统的惯性导航系统 • 为 PrSM 目标集设计的增强杀伤力弹头 • 不敏感弹药推进系统和有效载荷 • 兼容高机动性火炮火箭系统和 M270
摘要 本文全面概述和总结了在 M11 测试设施和位于 Lampoldshausen 的 DLR 物理化学实验室进行的研究和测试活动。研究重点是先进的火箭推进剂和用于空间技术的新材料。此外,还将展示和讨论有关超音速流动和超音速冲压发动机冷却的活动。还介绍了机器学习方法在火箭发动机控制中的应用。先进火箭推进剂方面的活动包括对 ADN(二硝酰胺铵)基推进剂、过氧化氢、基于一氧化二氮 (HyNOx) 的单推进剂和双推进剂、绿色自燃双推进剂以及凝胶和硝基甲烷基推进剂的研究。对于每种推进剂或推进剂组合,总结了 DLR 内部项目的主要研究和测试结果。此外,还介绍了欧盟和欧空局关于先进推进剂和在 DLR Lampoldshausen 进行的研究的项目的部分结果。
另一项重要发明是火药。火药的起源不明。然而,根据经文,历史学家认为中国人在仪式中使用硝石、硫磺和木炭的混合物。点燃这些混合物时会产生火花和明亮的烟雾。竹管中装满这种黑色混合物,两端密封。然后将竹管扔进火焰中。竹管会爆炸,发出明亮的闪光和巨大的噪音,这是他们仪式的一部分。有时,其中一个密封端会破裂,而不是爆炸,热气体会从开口端逸出,从而将竹管送入天空。观察到这种现象后,中国人将这些竹管绑在箭上,并在公元 1232 年的开坑之战中用来对抗蒙古人。火箭就这样诞生了。
本文介绍了全球范围内混合火箭发动机在太空运输中的应用发展现状。介绍了历史根源,并分析了在几十年内人们对混合技术兴趣不大之后重新审视该技术的原因。本文讨论了探空火箭、可重复使用亚轨道系统和运载火箭的现代发展,特别关注推进剂技术。各种推进剂组合包括使用液氧、过氧化氢、一氧化二氮和一氧化二氮-氧气混合物作为氧化剂。本文考虑了不同的燃料,并考虑了性能以及可获得的回归率等。本文介绍并分析了使用不同推进剂组合的车辆的初步计算结果。并与全球范围内提出的混合火箭配置进行了比较。本文指出了尚未解决的问题和几个未知数,包括混合火箭发动机的可扩展性问题、大型发动机的燃烧不稳定性、金属化燃料的燃烧效率、推进剂的体积性能以及车轮颗粒几何形状下的燃料残留质量。本文讨论了新型太空混合运载火箭(虽然通常级间可重复使用性有限)是否在成本上与其他化学火箭推进系统开发相比具有竞争力。本文总结了未来潜在的进步和技术机遇。进行这项研究的主要目的是对全球现有或目前正在开发的不同混合推进技术进行比较。
位于英国白金汉郡韦斯科特创业园(前身为韦斯科特火箭推进机构)的火箭开发和测试设施 70 多年来一直是英国化学火箭科学和技术的中心。与大多数行业一样,英国化学火箭行业在其历史上经历了高潮和低谷,韦斯科特的员工人数在 20 世纪 70 年代和 80 年代高达 1,100 人,而在千禧年左右则低至 15 人。之前的一篇论文集中讨论了韦斯科特早年的火箭活动 [1, 2];本文集中于 2021 年,重点关注 Airborne Engineering 和 Nammo UK 的活动。这些火箭公司经常合作进行新技术试验和机构赞助的研究计划。每个组织都有一套独特的能力和专业知识,可以汇集在一起,在这些计划上互利互惠。这些能力共同构成了