TEPCE 是一颗 3U 立方体卫星,旨在探索使用电动力推进航天器的可行性。推进力是通过沿着连接两个航天器末端质量的长线(称为系绳)传导电流产生的。当航天器沿其轨道移动时,地球磁场会在磁场和系绳中的电子之间产生洛伦兹力,从而为航天器提供推力。它不需要化学或其他传统燃料源。TEPCE 是首批自给式电动力推进航天器之一。TEPCE 于 2019 年 6 月 25 日搭载 SpaceX Falcon Heavy 火箭发射。这是一艘成功的航天器,展示了可使航天器利用电动力学原理进行机动的机械和电气系统。
IHI Aerospace Co., Ltd.(以下简称“IA”)自首次开发铅笔火箭以来,一直致力于固体燃料火箭发射系统的研发。IA还支持了MV火箭的开发,MV火箭是一种各级均使用固体燃料的火箭,曾用于发射行星探测器“HAYABUSA”(日语中意为“猎鹰”),为固体火箭发射系统技术的进步做出了贡献(图1)。MV火箭的性能达到了世界最高水平,但由于成本高昂,在2006年9月发射太阳观测卫星“HINODE”(日语中意为“日出”)后,MV火箭停产。固体火箭作为小型卫星发射装置在世界范围内备受推崇,美国目前采用一种名为Minotaur的固体火箭,而欧洲国家则
如果您曾经见过火箭发射、坐过飞机、开过汽车、用过电脑、接触过移动设备、跨过桥梁或佩戴过可穿戴技术,那么您很有可能使用过 ANSYS 软件在其创建过程中发挥了关键作用的产品。ANSYS 是工程仿真领域的全球领导者。通过我们的“普适工程仿真”战略,我们帮助世界上最具创新精神的公司向其客户提供更好的产品。通过提供最好、最广泛的工程仿真软件组合,我们帮助他们解决最复杂的设计挑战并创造出仅受想象力限制的产品。ANSYS 成立于 1970 年,总部位于美国宾夕法尼亚州匹兹堡南部。请访问 www.ansys.com 了解更多信息。
Rocket Lab 的高 ΔV 小型航天器高能光子 (Photon) 可以实现定期、专用、低成本的行星目的地科学任务,从而为科学家提供更多机会并提高科学回报率。高能光子可以搭载 Rocket Lab 的电子运载火箭发射,以精确瞄准行星小型航天器任务的逃逸渐近线,有效载荷质量高达 ~40 千克,无需中型或重型运载火箭。高能光子还可以作为次级有效载荷在 EELV 二级有效载荷适配器 (ESPA) Grande 端口或 Neutron 等其他运载火箭上飞行。本文介绍了目前正在开发的行星小型航天器,这些航天器利用了 Rocket Lab 的深空能力,包括月球、金星和火星任务。
在人造卫星存在的大部分时间里,其环境效益(特别是通过提供遥感数据)似乎大大超过了其环境成本。随着目前和预计的地球观测卫星和其他低地球轨道卫星数量的急剧增长,现在需要更仔细地考虑这种权衡。这里我们重点介绍了卫星技术对环境的一系列影响,采用生命周期方法来评估从制造、发射到脱轨期间的燃烧的影响。这些影响包括可再生和不可再生资源的使用(包括与数据传输、长期存储和分发相关的资源)、火箭发射和卫星脱轨对大气的影响,以及夜空变化对人类和其他生物的影响。对某些影响规模的初步估计足以强调需要进行更详细的调查,并确定可以减少和缓解影响的潜在方法。
在人造卫星存在的大部分时间里,其环境效益(特别是通过提供遥感数据)似乎大大超过了其环境成本。随着目前和预计的地球观测卫星和其他低地球轨道卫星数量的急剧增长,现在需要更仔细地考虑这种权衡。这里我们重点介绍了卫星技术对环境的一系列影响,采用生命周期方法来评估从制造、发射到脱轨期间的燃烧的影响。这些影响包括可再生和不可再生资源的使用(包括与数据传输、长期存储和分发相关的资源)、火箭发射和卫星脱轨对大气的影响,以及夜空变化对人类和其他生物的影响。对某些影响规模的初步估计足以强调需要进行更详细的调查,并确定可以减少和缓解影响的潜在方法。
自 21 世纪初以来,美国一直积极发展高超音速武器(飞行速度至少为 5 马赫的机动武器),将其作为常规全球快速打击计划的一部分。近年来,美国将这种努力集中在开发高超音速滑翔飞行器(从火箭发射,然后滑翔到目标)和高超音速巡航导弹(飞行过程中由高速吸气式发动机提供动力)。正如前参谋长联席会议副主席、前美国战略司令部司令约翰·海顿将军所说,这些武器可以“在其他部队无法使用、被拒绝进入或不受欢迎的情况下,对远距离、有防御和/或时间紧迫的威胁 [如公路机动导弹] 进行反应灵敏的远程打击”。另一方面,批评者认为,高超音速武器缺乏明确的任务要求,对美国军事能力贡献不大,而且对威慑没有必要。
在一个示例模拟中,需要 12 年的时间才能将一颗大型小行星自主改造成空间站。这只需一次火箭发射即可完成。单个有效载荷包含一个基站、4 个机器人(蜘蛛)和一套简单的补给品。我们的模拟创建了 3000 个蜘蛛和超过 23,500 件其他设备。只有基站和蜘蛛(复制器)拥有先进的微处理器和算法。这些代表了从地球创造和运输的 21 世纪技术。这些设备和工具是使用现场材料建造的,代表了 18 或 19 世纪的技术。这些设备和工具(助手)拥有简单的机械程序来执行重复性任务。最终的示例站将是一个直径近 5 公里的旋转框架。一旦完成,它可以养活超过 700,000 人的人口。
进入太空:推进对于进入太空和获得电信、导航和地球观测的好处至关重要。如今,发射行业受到多种趋势的影响。首先,发射节奏每年都在增加,这是由于对太空基础设施支持的服务的需求不断增长。随着低地球轨道卫星通信星座(如 Starlink 或 OneWeb 和 Amazon Kuiper)以及两个计划中的中国机构星座 Guowang 和 G60 的出现,这一趋势急剧加剧。第二个重大突破是垂直着陆和运载火箭助推级可重复使用,这是 SpaceX 的猎鹰 9 号开创的。尽管猎鹰 9 号是目前唯一具有可操作和可靠的助推级可重复使用技术的运载火箭,但可重复使用的火箭发射在 2023 年将占所有发射的 41% 9 。第三个主要趋势涉及向碳中和和可持续的转变
数学11。iain alderman - 火箭发射和通过动态系统建立的土地系统。12。Dylan Barker - N体动力学系统来描述蜘蛛网。13。Jeffrey Charcut - 动态电路:使用微分方程进行建模和分析。14。Aaron Croos - 使用动态系统来预测天气模式。15。Brian Hubbard - 倒摆的动态控制。16。标记Lammers-Meis - 三体问题的动力系统。17。Kolbe McLenon-动态系统如何帮助商人将数学变成金钱。18。蒂姆·迈耶(Tim Meyer) - 捕食者和猎物:动物种群的数学建模。19。雅各布·桑德(Jacob Sander) - 用微分方程解释的一个简单的摆。20。ben seffens - 种群建模的微分方程。21。Ethan Turner - 揭幕March Madness:通过动态系统预测NCAA锦标赛的获胜者。