14 VMFT-401:海军陆战队的对手中队 作者:Patrick Reed VMFT-401 于 1986 年启动,旨在满足海军陆战队机组人员对异种空战训练 (DACT) 日益增长的需求。 为了成功进行此类训练,对手需要扮演一个真实的对手。 换句话说,VMFT-401 必须扮演“坏人”并且擅长此道。 24 从高处看:1941-1945 年美国海军陆战队/美国海军空对地火箭的发展 作者:Jonathan Bernstein 当海军陆战队需要火力支援时,他们会依靠火箭炮精确、随叫随到的火力。 然而,制造出可用于战斗的可靠火箭需要多年的创新。 请在此处阅读有关第二次世界大战期间空对地火箭的发展和改进。 36 “礼物”:揭示下士杰森·邓纳姆的持久影响 作者:凯尔·沃茨 Three Branches Productions 最近完成了一部备受期待的纪录片,该片讲述了荣誉勋章获得者杰森·邓纳姆下士的故事,Leatherneck 有机会放映了这部电影并采访了导演。请阅读有关制作团队、“Kilo”连队 3/7 的海军陆战队员以及这部电影如何以动人的方式讲述杰森·邓纳姆的故事。 44 漫漫长路:海军陆战队从东海岸步行到西海岸,以提高人们的认识,为 MIA 搜救筹集资金 作者:南希·S·利希特曼 三名海军陆战队员,现役总年限共计 67 年,去年年底完成了一次史诗般的旅程,他们徒步穿越全国 3,365 英里,以纪念我们国家的战俘、mi
高度范围50-130 km的地球的中层和较低的热层是我们大气中的一个迷人部分。辐射,动力学,微物理和化学过程之间的复杂相互作用产生了几种突出现象,其中许多以中间区域为中心(80-100 km)。这些现象包括夜光云,极性的夏季回声,气象材料的消融和转化以及地球的气流。强烈分层和小规模相互作用是这些现象和中间区域的常见特征。为了在相关的空间尺度上研究相互作用,声音火箭的原位测量对于中层研究至关重要。本文提出了用于发声火箭的新测量技术和分析方法,从而有助于提高我们对这一偏远大气的理解。考虑到需要以1 km/s的典型火箭速度进行测量,因此既有选择性,敏感,精心校准的仪器的设计,又是由于空气动力学影响而引起的。本论文包括对气象颗粒的影响和采样技术的定量空气动力学分析,揭示了由于粒子流动而引起的明显尺寸歧视。对中层冰颗粒种群的光学技术,从而产生了基于短紫外线波长下MIE散射的较小颗粒的仪器概念。此处介绍的工作还为2010年7月的Esrange即将到来的Phocus Rocket运动提供了重要的预研究。火箭传播的共振荧光测量原子氧是严格评估的,从而导致基于O 2气流排放的光度计的新校准概念。phocus(夏季上层中的颗粒,氢和氧化学)将解决三个主要的中层参与者之间的相互作用:陨石烟,夜光云和气相化学。
目前,SpaceX 对猎鹰 9 号和重型火箭的第一级采用返回发射场 (RTLS) 和近程着陆 (DRL) 方法,这需要大量燃料用于减速和着陆。涡扇发动机驱动的返回飞行技术(如带翼 LFBB)效率更高,但需要额外的推进系统及其燃料,这也会增加该级的惰性质量。一种完全不同的创新方法可使性能更好的 RLV 级返回,即获得专利的“空中捕获” (IAC) [1]:带翼可重复使用级将在空中被捕获并拖回发射场,此阶段无需任何自身的推进系统 [2]。图 1 显示了可重复使用级的完整操作 IAC 循环示意图。发射器升空时,捕获飞机正在近程会合区等候。在完成 MECO 后,可重复使用的带翼级与运载火箭的其余部分分离,然后沿弹道飞行,很快到达密度更大的大气层。在 20 公里左右的高度,它减速至亚音速,并在滑翔飞行路径中迅速下降。此时,可重复使用的返回级通常必须启动最后的着陆方法或必须启动其辅助推进系统。不同的是,在空中捕获方法中,可重复使用的返回级由一架装备齐全的捕获飞机(很可能是全自动的,也可能是无人驾驶的)等待,该捕获飞机提供足够的推力来牵引具有限制升阻比的带翼发射级。整个机动过程在几千米的高度完全亚音速 [3]。成功连接两辆运载火箭后,带翼可重复使用的返回级由大型运载飞机拖回发射场。靠近机场时,返回级从牵引机上释放,并像传统滑翔机一样自动滑行到着陆跑道。
PSLV-C56 / DS-SAR是新加坡St Engineering的Newspace India Limited(NSIL)的专用商业任务。ds-sar,雷达成像地球观测卫星是该任务的主要卫星。除此之外,还属于新加坡的六个共同乘客客户卫星。所有卫星将被注入535 km的圆形,并具有5个轨道倾斜度。这是PSLV的第58次飞行和仅在核心配置中的PSLV的第17次飞行。注入所有卫星后,火箭的上阶段将放置在下轨道中,以确保其轨道寿命降低。PSLV-C56发射将从位于Sriharikota的Satish Dhawan太空中心(SDSC)的第一个发射台(FLP)完成。
摘要:捷龙三号运载火箭是在借鉴现有长征十一号固体火箭经验的基础上,针对我国日益增长的中低轨道商业卫星发射市场需求而设计的一款商业运载火箭,具有火箭整体贮存、海陆发射通用、反应迅速、经济高效等特点,是目前国内成功飞行的运载能力最大、整流罩包层面积最大的固体运载火箭。本文介绍了该火箭的主要技术指标、总体方案,重点从海上热发射、“大罩”构型与低商业成本以及与卫星的接口等方面介绍了该火箭研制中遇到的主要难点,期望通过技术和经济的结合,为用户提供更优质的商业发射服务。
如今的卫星体积更小、性能更强,而且配备了最新技术。与传统的大型地球静止卫星相比,它们的建造和发射速度更快、成本效益更高,而且它们的大规模生产能力使企业、学生和研究人员比以往任何时候都更容易获得它们。小型卫星市场持续增长,据估计,未来几年将有大约 5,000 颗小型航天器等待进入轨道。随着 Rocket Lab 及其 Electron 火箭频繁提供进入近地轨道及更远轨道的服务,小型卫星运营商不再需要像搭乘大型火箭的拼车客户一样长时间等待。Rocket Lab 的发射频率有助于消除小型卫星公司建造航天器的速度与发射机会之间的不匹配。
第二部分:中东弹道导弹和太空活动 11 伊朗弹道导弹和航天运载火箭的发展 11 伊朗民用航天计划开始独立发展 12 以色列的全频谱航天力量 13 其他地区航天计划的崛起及其影响 15 中东非动能和动能反太空活动 16 海湾国家之间为进入太空而展开的竞争 17 地理位置和地区航天发射 19 中东空间技术以及外部力量的作用和影响 20 商业航天竞争、导弹防御和反太空 21 地区非国家行为者、弹道导弹和太空 22
美国宇航局刘易斯研究中心的主要职责是研究和开发飞机和航天器的推进和动力系统。该职责比美国宇航局成立早很多年,实际上可以追溯到 1941 年,当时兰利实验室的一个小组搬到克利夫兰,建立了国家航空咨询委员会的航空发动机研究实验室,这是美国宇航局的前身。有了这样的历史背景,我们从应用的角度看待我们的大部分研究,以应用于新的或改进的推进和动力概念和系统,也就不足为奇了。正是这种观点导致了我们在本次会议上讨论的大部分研究和技术。这项研究针对的一些推进和动力概念距离应用还很遥远,有些可能被证明是不可行的。但是,除非对这些概念进行一些研究,否则我们无法发现这些概念的真正问题和局限性。确定推进概念的可行性确实是刘易斯的主要职责。在 20 世纪 40 年代和 50 年代初期,该中心的大部分活动涉及航空发动机,主要是涡轮喷气发动机及其相关部件。研究了它们在所有速度范围内的任务。这些系统、部件和任务研究的结果定期以会议的形式提交给航空工业、相关大学和军队。在过去的十年中,此类会议断断续续地持续着。这次会议是新系列会议之一,将以浓缩和总结的形式介绍我们在刘易斯活动几个领域的观点和研究成果。在 NACA 时期,刘易斯正在研究其他推进概念(除涡轮喷气发动机外),例如冲压喷气发动机、高能化学火箭和核动力航空发动机,以及任务和应用研究。一些关于核能用于涡轮喷气发动机、冲压喷气发动机和火箭的评估研究可以追溯到 1946 年。随着 1947 年中期对导弹的重视程度不断提高,刘易斯中心开始研究其他推进概念(除涡轮喷气发动机外),例如冲压喷气发动机、高能化学火箭和核动力航空发动机,以及任务和应用研究。一些关于核能用于涡轮喷气发动机、冲压喷气发动机和火箭的评估研究可以追溯到 1946 年。