印度在尽可能最大程度上遵守联合国和机构间空间碎片协调委员会 (IADC) 的空间碎片减缓准则,同时努力更好地遵守准则。为遏制空间碎片的增长而采取的措施包括发射前避免碰撞以确定运载火箭的安全升空、对运行中的航天器进行空间物体接近度分析、在需要时执行避免碰撞机动、钝化火箭级、在任务结束后处置卫星和运载火箭上级。2023 年,GSAT-12 重新进入超同步轨道并在退役前钝化,完全符合联合国和 IADC 建议的地球静止轨道物体任务后处置准则。一项极具挑战性的实验成功完成,该实验旨在使 Meghatropiques-1 脱离轨道并确保其在太平洋无人区上空受控重返大气层。印度发射的所有轨道火箭级在任务结束后均钝化。 PSLV-C56 的上级被脱离轨道至 300 公里高度,以将其发射后的轨道寿命限制在不到一个月的范围内。采取了具体举措,以提高新进入太空领域的人的认识,并指导他们实施空间碎片减缓措施。
在 20 世纪 60 年代和 70 年代,许多被认为是可以接受和无害的生活方面现在已经变得不可接受和有害 - 而大型火箭级撞击月球肯定是这一演变的一部分 - 但第四条对“任何必要的设备或设施”的广泛接受是一个过于宽泛的定义。该条款不仅允许对“和平”一词进行广泛的解释,而且还要求对“必要”进行定义。例如,我们是否允许永久性破坏月球表面的采矿设备的操作?如果允许,破坏程度如何:用普通肉眼观察;通过普通业余望远镜观察;还是从 100 公里的月球轨道观察?
检查、加油、升级、维修或救援卫星,清除轨道碎片,以及建造和维护大型轨道资产和基础设施等要求对于在轨空间基础设施的维护非常重要。到目前为止,所有值得注意的维修任务都是由宇航员舱外活动 (EVA) 在低地球轨道 (LEO) 上执行的。然而,这些操作风险大、成本高、速度慢,有时甚至不可行。EVA 可以被机器人在轨维修 (OOS) 取代,在此期间,任务由空间机械手系统 (SMS) 执行,在文献中也称为追逐者或服务者。它们由一个卫星基座组成,该基座配备一个或多个带有抓钩装置的机器人机械手(臂),并由视觉系统驱动,从而能够捕获目标(客户)卫星。SMS 也可以是安装在空间设施上的大型维修机械手。本研究课题重点关注在轨操纵和捕获,以及与这些活动相关的方面。因此,它包括与刚性和柔性 SMS 的动力学、相关的接触动力学、空间系统的识别方法、监控和控制所需的姿势和状态感测、抓取目标的运动规划方法、运动或交互任务期间的反馈控制方法以及此类系统的地面测试试验台相关的工作。该研究主题包括五篇文章。在《从空气轴承支撑的测试数据估计空间机械手的振动特性》中,李等人从理论和实验上研究了与平面实验测试试验台相关的问题,该试验台使用空气轴承垂直支撑缩放 SMS 并在平面上创建零重力环境。作者指出,空气轴承会影响缩放 SMS 的动力学行为,从而影响其表观关节的刚度和阻尼、固有频率和振动响应。作者提出了一套程序来消除空气轴承的影响,并从电机制动系统的测试数据中识别真实的等效关节刚度和阻尼。识别惯性特性,并使用遗传算法确定等效关节刚度和阻尼。通过消除空气轴承引起的额外惯性,可以估算出机械手的真实振动特性。在《废火箭级在轨机器人抓取:抓取稳定性分析和实验结果》中,Mavrakis 等人研究了废火箭级的抓取,分析了抓取稳定性,并展示了实验结果。提出了一种评估废火箭级机器人抓取稳定性的新方法,该方法基于计算 Apogee Kick Motor 喷嘴的两指抓取的固有刚度矩阵,并将稳定性指标定义为局部接触曲率的函数,材料特性、施加的力和目标质量。稳定性指标是
所有航天机构和公司共享太空,它们发射的卫星会造成太空拥堵和碰撞风险。它们各自发射了过多的卫星,这是因为它们未能将加剧拥堵对自身以外的其他人的影响内部化,因此存在风险。我们调查通过限制卫星发射可以在多大程度上减少太空垃圾。太空垃圾是指在地球轨道上制造的人造物体,例如旧卫星和火箭级。它包括它们解体、侵蚀和碰撞产生的碎片。今天,地球轨道上共有 20 021 个人造物体,其中包括 2 060 颗运行中的卫星。此外,轨道上还有超过 1.3 亿块小于 1 厘米的碎片,约 90 万块 1-10 厘米的碎片,以及约 34 000 块大于 10 厘米的碎片。
可用于“导弹”的机构及其级间装置。(这些物品“受《国际武器贸易条例》管辖”。请参阅 22 CFR 第 120 至 130 部分。)9A118 用于调节发动机燃烧的装置,可用于能够达到“射程”等于或大于 300 公里的火箭、导弹和无人驾驶飞行器的发动机,受 9A011 或 9A111 控制。(这些物品“受《国际武器贸易条例》管辖”。请参阅 22 CFR 第 120 至 130 部分。)9A119 单个火箭级,可用于射程大于 300 公里或更大的火箭,但 9A005、9A007、9A009、9A105、9A107 和 9A109 控制的火箭除外。(这些物品“受《国际武器贸易条例》管辖”。请参阅 22 CFR 第 120 至 130 部分。)9A120 完整的无人驾驶飞行器,未在 9A012 中指定,具有以下所有特征(请参阅受控物品清单)。许可要求
摘要 ArianeWorks 是由法国国家空间研究中心和阿丽亚娜集团发起的创新平台,它加速了 Themis 的开发,Themis 是一种由液氧和生物甲烷推动的低成本可重复使用的火箭级演示器,为 2030 年的欧洲发射系列铺平了道路。根据其股东的生态设计愿景,ArianeWorks 在 Themis 计划中启动了生态设计战略的实施。在此背景下,本研究介绍了基于半可重复使用发射器的发射服务的生命周期评估,该发射器源自 Themis 并在圭亚那航天中心运行,该评估发生在 Themis 的早期设计阶段。该分析意味着开发一个特定的框架来解释下级的可重复使用性,需要使用经过调整的功能单元、在生命周期中引入新的阶段以及特定的参数化来描述其复杂性。本文接着进行了敏感性分析,以确定影响的主要驱动因素并支持设计权衡分析,然后估计最大可信缓解潜力。然后,概述了一种评估可重复使用性可能带来的环境效益的方法,并为所研究的发射服务提供了初步结果。影响评估结果证实,结构和推进剂的生产对阿丽亚娜火箭的生命周期影响最大。由于延长寿命阶段会产生额外影响,因此低级火箭的回收和翻新也发挥着重要作用,但也使一些影响减少成为可能,这些影响可以通过明确的惯例来隔离。跨大西洋运输阶段或测试和加油期间的推进剂消耗会造成不可忽略的影响,这些影响可以通过采用节俭的方法或技术创新来减轻。总体而言,该研究强调,与基线相比,对气候变化和资源枯竭的总影响可能减少约 30-80%。然而,尽管人们普遍认为可重复使用性可以减少生命周期影响,但研究表明,实际情况要复杂得多,因为从发射器的环境性能比较中得出的结论取决于惯例、市场参数、运营方案和环境影响类别。对于所研究的发射服务,结果表明,虽然可重复使用性可能会减少对资源枯竭的影响,但它可能会增加对气候变化的影响。此外,可重复使用性的任何环境效益都可能被这项技术所促进的全球太空活动的增长完全抵消,从而导致适得其反的反弹效应。本研究强调,由于采用生态设计方法,影响可能会减少,这将减轻这种影响。关键词:环境影响、生命周期评估、生态设计、发射器、可重复使用性、方法论 首字母缩略词/缩写
不受控制的火箭再入造成的不必要风险 Michael Byers 加拿大不列颠哥伦比亚大学政治学系,温哥华,不列颠哥伦比亚省 Ewan Wright 1 加拿大不列颠哥伦比亚大学跨学科研究研究生课程,温哥华,不列颠哥伦比亚省 Aaron Boley 加拿大不列颠哥伦比亚大学物理与天文学系,温哥华,不列颠哥伦比亚省 Cameron Byers 加拿大维多利亚大学工程学士课程 1. 摘要 2020 年,超过 60% 的低地球轨道发射导致一个或多个火箭体被遗弃在轨道上,并最终以不受控制的方式返回地球。在这种情况下,它们 20% 到 40% 的质量会在重返大气层的热量中幸存下来。许多幸存的碎片非常重,足以对陆地、海上和飞机上的人们构成严重风险。对于重返太空物体的可接受风险水平,国际上尚无共识。这有时是一个争论点,例如 2021 年 5 月,重达 20 吨的长征 5B 火箭核心级失控再入。包括美国、法国和欧空局在内的一些监管机构已经对重返大气层的太空物体设定了 1/10,000 的可接受伤亡风险(即对人类生命的统计威胁)阈值。我们认为,这一阈值忽略了火箭发射次数迅速增加的累积效应。它也无法解决低风险、高后果的结果,例如火箭级撞上人口稠密的城市或大型客机。在后一种情况下,即使是一小块碎片也可能造成数百人伤亡。除此之外,当遵守成本被认为过高时,这一门槛经常被忽视或放弃。我们分析了 1992 年至 2021 年重返大气层的火箭体,并模拟了相关的累积伤亡预期。然后,我们将这一趋势推断到不久的将来(2022 - 2032 年),模拟不受控制的火箭体再入对全球人口的潜在风险。我们还分析了目前在轨并预计很快将脱离轨道的火箭体数量,发现风险分布明显偏向赤道附近的纬度。这意味着主要航天国家给全球南方国家带来了不成比例的伤亡风险负担。现代火箭拥有可重新点燃的发动机,允许受控再入偏远的海洋区域。这与更新的任务设计相结合,将消除大多数不受控制的再入的需要。一些额外的成本将落在发射提供商身上,包括再入机动的额外燃料。政府任务应该能够吸收这些额外成本,但它们可能会影响商业发射提供商的竞争力。全球南方国家,不受控制的火箭弹体给这些国家的人民带来了不成比例的风险,因此,应该要求主要航天国家通过强制控制火箭再入来创造公平的竞争环境。这一解决方案必须由多边协调,必须对不遵守规定的行为产生有意义的后果,同时为那些无法立即参与或负担得起控制再入的人留有余地。1 通讯作者:etwright@student.ubc.ca
I. 序言 新的太空技术和轨道商业机会催生了全球航天产业的指数级增长和快速变化。火箭发射、卫星再入和上级火箭将气体和气溶胶排放到从地球表面到低地球轨道的每一层大气层中。这些排放可能会影响气候、臭氧水平、中层云量、地面天文学以及热层/电离层成分。航天产业的增长速度令人印象深刻:发射和再入质量通量最近每三年翻一番(Lawrence 等人,2022 年)。根据行业预测,到 2040 年,太空活动将继续增加至少一个数量级(Ambrosio 和 Linares,2024 年)。大型低地球轨道 (LEO) 卫星星座正在改变航天产业,因此到 2040 年,计划中的系统每年将需要发射和处置超过 10,000 颗卫星到大气层中。到 2040 年,以液化天然气 (LNG) 燃料发动机为动力的重型运载火箭预计将成为发射活动的主导 (Dominguez 等人,2024)。航天工业向大气排放的范围和性质正在急剧增长和变化 (Shutler 等人,2022)。发射和再入气溶胶排放量估计表明,到 2040 年,许多计划中的大型低地球轨道星座将需要将发射吨位从目前的 3,500 tyr -1 增加到 30,000 tyr -1 以上 (Shutler 等人,2022)。火箭燃烧排放量将与有效载荷同步增加。蒸发空间碎片和废火箭级的再入排放量将从目前的每年 1,000 吨增加到每年 30,000 吨以上 (Shulz 和 Glassmeier 2021)。到 2040 年,全球发射和再入大气层颗粒物(黑碳和金属氧化物)排放到平流层的总通量将与自然陨石背景通量相当。这些估计不包括不确定但可能很重要的发射要求,例如 MEO(中地球轨道)和 GEO(地球静止赤道轨道)等轨道上的新太空系统或积极的月球或火星探索计划。发射和再入大气层排放量的上升是在人们对航天排放的成分和化学成分存在广泛知识缺口的情况下发生的。人们对大型液化天然气火箭的排放和影响知之甚少。最近发现,重返大气层的太空碎片中的金属已经存在于构成天然平流层硫酸盐层的 10% 颗粒中,这强调了迫切需要了解未来重返大气层数量级的增加将如何影响大气(Murphy 等人,2023 年)。显然,总体上缺乏评估未来航天排放影响所需的科学和工程模型、工具和数据。知识差距:为了应对这些日益增长的担忧,2021 年,Surendra P. 博士美国宇航局艾姆斯研究中心的 Sharma 组织并领导了一个多机构工作组(航空航天公司的 Martin Ross 博士、NOAA/CSL(美国国家海洋和大气管理局/化学科学实验室)的 Karen Rosenlof 博士、科罗拉多大学 NOAA CSL 化学与气候过程组的 Chris Maloney 教授、哥伦比亚大学的 Kostas Tsigaridis 以及 GISS/NASA(戈达德空间研究中心/美国国家航空航天局)的 Gavin Schmidt 博士),在美国宇航局内部资金(地球科学部)的支持下,分析了预测发射和再入排放全球影响的模型的有效性和可信度,以及可用于验证这些模型的数据。该小组确定了对该现象的基本科学理解方面的关键差距,包括建模技术和