左手和右圆形发光(CPL)1,2的材料对于丰富的应用程序,例如3D光学显示,3,4个信息存储和处理,5,6个光电设备,7-9和光学安全标签非常有用。10到目前为止,生产具有高度对称因子(G LUM)的CPL仍然是一个重大挑战,这主要是由于在排放过程中具有较大的磁性偶极矩和相对较小的电动偶极矩的系统罕见。只有少数类小的手性有机痣,8,11,12个,例如paracyclophanes,13,14架直升机15-25和Binol衍生物,26-30可以产生相对较高的CPL的明显CPL | g lum |在10 -3〜10 -2的范围内。几种类型的手性灯笼 - 丛 - 丛具有更大的| g lum | (0.05至1.38)由于独特的内部形象f- f跃迁而导致laporte-forbdide并显示出较大的旋转强度。31–33然而,由于其低发光强度以及分子设计和合成的困难,这些灯笼材料的应用通常受到限制。
摘要:科学和技术的持续发展需要在越来越高的空间分辨率下进行温度测量。具有温度敏感发光的纳米晶体是提供高精度和远程读取的这些应用的流行温度计。在这里,我们证明了比率发光热实验可能会遭受纳米结构环境中的系统误差。我们将基于灯笼的发光纳米热计处于距AU表面高达600 nm的控制距离。尽管这种几何形状不支持吸收或散射谐振,但由于光态的变化密度变化导致温度计的变形导致高达250 K的温度读出误差。我们的简单分析模型解释了温度计发射频率,实验设备以及误差幅度的样品的效果。我们在几种实验场景中讨论了我们发现的相关性。这种错误并不总是发生,但是在反映界面或散射对象附近的测量中可以预期它们。关键字:光子学,光态的密度,温度传感,纳米晶,灯笼的发射
抽象的灯笼掺杂(Nano)晶体是发光温度计中重要的材料类。这些温度计的工作机制是多种多样的,但通常依赖于从两个温度下的热耦合激发态的发射强度比的变化。在低温下,与辐射衰减相比,状态之间的非辐射耦合可能会很慢,但是在较高温度下,由于更快的非辐射耦合,这两个状态达到了热平衡。在热平衡中,强度比遵循Boltzmann统计数据,该统计量提供了方便的模型来校准温度计。在这里,我们研究了多种策略,以将热平衡的发作转移到较低的温度,从而使Boltzmann温度计在更广泛的动态范围内。我们使用EU 3 + - 掺杂的微晶作为模型系统,并发现具有较高振动能和较短的灯笼距离的宿主晶格的非放射性耦合率增加 - 配体距离,这会使热平衡的发作降低了400 k。由于选择规则,温度比具有磁极偶联状态的温度。这些见解为优化玻尔兹曼温度计以在延长温度范围内运行的基本指南提供了必不可少的指南。
1. 导航(GPS、地图或指南针) 2. 防晒用品(太阳镜、防晒霜或帽子) 3. 隔热材料(外套或内衣等衣物) 4. 照明(头灯、手电筒或灯笼) 5. 急救箱 6. 打火机(火柴或打火机) 7. 修理工具(胶带、多功能工具等) 8. 食物 9. 水 10. 紧急避难所(帐篷、太空毯或防水布)
摘要:灯笼在光电子中主要用于掺杂剂,以增强半导体设备的物理和光学特性。在这项研究中,灯笼(III)氢氧化物纳米颗粒(LA(OH)3 NP)用作聚乙基亚胺(PEI)功能化的氮(N)掺杂的石墨烯量子点(PEI- N GQD)的掺杂剂。通过绿色新颖方法在单一步骤中从LA(NO)3中制备3个NPS掺杂的PEI- nps-n GQD纳米复合材料,并以傅立叶转换红外光谱(FT-IR)为特征(TEM)。 在n型Si晶圆上沉积,洛杉矶(OH)3 nps掺杂的PEI- N GQDS纳米复合材料形成Schottky Diodes。 I -V特性和二极管的光响应是根据照明强度在0-110 mW cm -2和室温下的照明强度的函数。 发现二极管的直接拟合比和理想性因子降低,而Schottky屏障和串联电阻随着增强的照明而增加。 作为光电探测器,LA(OH)3 nps掺杂的PEI- N GQD/N-SI异质结的表现出3.9×10 - 3 AW - 1在22 mW cm-2下,在-0.3 V偏见下,在22 mW cm-2下,最大检测到8.7×10 8 JONES的最大检测,并在8.7×10 8 JONES中进行了研究。呈现LA(OH)3 NPS掺杂的PEI-N GQD的结构,电气和光电特性,表明这些纳米复合材料对于光电应用程序有望有望。通过绿色新颖方法在单一步骤中从LA(NO)3中制备3个NPS掺杂的PEI- nps-n GQD纳米复合材料,并以傅立叶转换红外光谱(FT-IR)为特征(TEM)。在n型Si晶圆上沉积,洛杉矶(OH)3 nps掺杂的PEI- N GQDS纳米复合材料形成Schottky Diodes。I -V特性和二极管的光响应是根据照明强度在0-110 mW cm -2和室温下的照明强度的函数。发现二极管的直接拟合比和理想性因子降低,而Schottky屏障和串联电阻随着增强的照明而增加。作为光电探测器,LA(OH)3 nps掺杂的PEI- N GQD/N-SI异质结的表现出3.9×10 - 3 AW - 1在22 mW cm-2下,在-0.3 V偏见下,在22 mW cm-2下,最大检测到8.7×10 8 JONES的最大检测,并在8.7×10 8 JONES中进行了研究。呈现LA(OH)3 NPS掺杂的PEI-N GQD的结构,电气和光电特性,表明这些纳米复合材料对于光电应用程序有望有望。关键字:稀土元素,灯笼(III)氢氧化物掺杂,石墨烯量子点,绿色方法,纳米复合二极管,光敏性
摘要:掺杂灯笼的纳米晶体(NCS)能够有效的光子上转换,即吸收长波长光和发射较短的波长光。启用上转换的内部过程是一个复杂的电子过渡和掺杂中心之间的能量转移网络。在这项工作中,我们研究了从β -nayf 4 NCS上的上升转换发射的上升和衰减动力学,并用ER 3+和YB 3+编码。红色和绿色上流排放的上升动力学是非线性的,反映了上转换的非线性性质,并揭示了填充发射状态的机制。激发状态衰减动力学是不符合的。我们使用光子实验揭示了潜在的衰减途径。这些在视觉上揭示了不同上转换途径的贡献,因为每个途径对光学状态的局部密度的系统变化都有明显的响应。此外,光学态的局部密度对仅核心NC的局部密度在质量上与核心 - 壳NC的作用在质量上不同。这是由于产生向上发射的电子水平的喂食与衰减之间的平衡所致。对此处提供的上转换动力学的理解可能会导致更好的成像和传感方法依靠上转换寿命或指导掺杂剂浓度的合理优化以使其更明亮。关键字:胶体纳米晶体,上转换,灯笼离子,激发状态动力学,光学状态的局部密度
•始于2010年,重点是新兴国家的网格太阳能市场。•我们拥有强大的产品设计和制造业(灯笼,路灯,电荷控制器,家庭照明系统等产品)。我们的运营团队拥有超过10年的经验。•我们专门针对企业和工业客户设计和安装屋顶太阳能解决方案•我们正在开发我们的品牌,因为太阳能包装过渡到B-2-C零售游戏。•对于太阳热应用,我们已经在基本的CSP开发和技术上进行了大量投资。•我们已经在古吉拉特邦Rajkot附近的5MW网格连接的电厂的基础上执行了66 kV的电力撤离系统。
光子雪崩(PA)纳米材料表现出任何材料报告的最非线性光学现象,从而使它们可以推动从超分辨率成像和超敏感的感官到光学计算的应用的边界。,但PA仍然笼罩在神秘之中,其基本的物理和局限性被误解了。光子雪崩实际上并不是雪崩光子的,至少不是像雪球在实际雪崩中更多地滚雪球一样。在这篇重点文章中,我们在基于灯笼的纳米颗粒中消除了PA围绕PA的这些和其他常见的神话,并揭示了这种独特的非线性光学效应的奥秘。我们希望消除雪崩纳米颗粒的误解将激发新的兴趣和应用,以利用PA在广泛的科学领域的巨大非线性。