1 Andros West Side National Park 2 Crab Replenishment Reserve 3 Blue Holes National Park 4 North Andros Marine Park 5 South Andros Marine Park 6 Rand Nature Centre 7 Peterson Cay National Park 8 Lucayan National Park 9 Walker's Cay National Park 10 Black Sound Cay National Reserve 11 Fowl Cays National Park 12 Pelican Cays Land & Sea Park 13 Tiloo Cay National Reserve 14 Abaco National Park 15 Primeval Forest National Park 16 Harrold & Wilson Ponds National Park 17 Bonefish Pond National Park 18 The Retreat 19 Exuma Cays Land & Sea Park 20 Moriah Harbour Cay National Park 21 Leon Levy Native Plant Preserve 22 Conception Island National Park 23 Southern Great Lake National Park 24 Pigeon Creek and Snow Bay National Park 25 Graham's Harbour Iguana & Seabird National Park 26 West Coast Marine Park 27 Green's Bay National Park 28 Great Hope House 29 Marine Farm 30 Little Inagua National Park 31 Union Creek Reserve 32 Inagua国家公园33 Seahorse国家公园位于Sweetings Pond and Hatchet Bay
从:11.12.13.14 $ telnet alln-mx-01.cisco.com 25尝试173.37.147.230 ...连接到alln-mx-01.cisco.com。逃脱字符是'^]'。220 alln-inbound-e.cisco.com esmtp helo mail.sender.com 250 alln-inbound-e.cisco.com邮件发出: 250 sender admin@sender.com> rcpt to: 250 coce.com> 250 coteent indry test test test:test:一个(用户1)user1@cisco.com
1.1 范围。本规范涵盖系列间和系列内射频 (RF) 同轴连接器适配器的性能要求和测试。1.2 分类。适配器由以下类别组成,并带有指定的零件识别号 (PIN)(见 3.1)。a.第 1 类 – 第 1 类适配器旨在在指定频率下提供卓越的 RF 性能,并且所有 RF 特性均已完全定义。b.第 2 类 – 第 2 类适配器旨在在提供指定 RF 性能的 RF 电路内提供机械连接。1.2.1 PIN。PIN 由字母“M”和基本规格表编号组成。零件编号中的第一位数字表示适配器主体(外壳)的材料和表面处理;即,“0”表示镀银黄铜,“3”表示钝化耐腐蚀钢,“4”表示镀金铜铍,“6”用于 SMA 系列和其他系列之间(SMA 主体为耐腐蚀钢,其他系列为黄铜),或“7”表示镀镍黄铜。后续数字将分配用于指定前一个“UG”编号或无意义的数字(如适用)。例如:M55339/ 01 - XXXXX 通用规格 规格表中的零件编号 规格表 AMSC N/A FSC 5935
定向灰盒模糊测试可以引导模糊器探索特定的目标代码区域,在补丁测试等场景中取得了良好的效果。然而,如果有多个目标代码需要探索,现有的定向灰盒模糊测试器(如AFLGo和Hawkeye)往往会忽略一些目标,因为它们使用距离的调和平均值,倾向于测试可达路径较短的目标。此外,现有的定向灰盒模糊测试器由于程序中存在间接调用,无法计算出准确的距离。此外,现有的定向灰盒模糊测试器无法解决探索和利用问题,种子调度效率低下。针对这些问题,我们提出了一种动态种子距离计算方案,当可达路径遇到间接调用时,动态增加种子距离。此外,种子距离计算可以处理多目标场景下的偏差问题。利用种子距离计算方法,我们提出了一种基于置信上限算法的种子调度算法,以解决定向灰盒模糊测试中的探索和利用问题。我们实现了一个原型 RLTG,并在实际程序上对其进行了评估。原型评估表明,我们的方法优于最先进的定向模糊器 AFLGo。在多目标基准测试 Magma 上,RLTG 以 6.9 倍的速度重现错误,并且比 AFLGo 多发现 66.7% 的错误。
在本文中,我们提出了一个预测定向灰盒模糊测试器 DeepGo,它可以结合历史和预测信息来引导 DGF 通过最佳路径到达目标站点。我们首先提出路径转换模型,该模型将 DGF 建模为通过特定路径转换序列到达目标站点的过程。突变产生的新种子将导致路径转换,而高奖励路径转换序列对应的路径表示通过它到达目标站点的可能性很高。然后,为了预测路径转换和相应的奖励,我们使用深度神经网络构建虚拟集成环境 (VEE),它逐渐模仿路径转换模型并预测尚未采取的路径转换的奖励。为了确定最佳路径,我们开发了一个强化学习模糊测试 (RLF) 模型来生成具有最高序列奖励的转换序列。RLF 模型可以结合历史和预测的路径转换来生成最佳路径转换序列,以及指导模糊测试突变策略的策略。最后,为了练习高奖励路径转换序列,我们提出了行动组的概念,全面优化模糊测试的关键步骤,实现高效到达目标的最优路径。我们在 2 个基准测试套件(共 25 个程序,100 个目标站点)上对 DeepGo 进行了测试。实验结果表明,与 AFLGo、BEACON、WindRanger 和 ParmeSan 相比,DeepGo 在到达目标站点方面分别实现了 3.23 倍、1.72 倍、1.81 倍和 4.83 倍的加速比,在暴露已知漏洞方面分别实现了 2.61 倍、3.32 倍、2.43 倍和 2.53 倍的加速比。
新提交的提交容易将漏洞引入程序。作为一种有前途的对策,可以使用定向灰盒模糊测试器通过将提交更改位置指定为目标来测试提交更改。但是,现有的定向模糊测试器主要侧重于达到单个目标,而忽略了对其他受影响代码的多样化探索。因此,它们可能会忽略在远离更改位置的位置崩溃的错误,并且在多目标场景中缺乏直接性,这在提交测试的背景下都很常见。在本文中,我们提出了一种直接灰盒模糊测试器 WAFLG O ,以有效发现提交引入的漏洞。WAFLGO 采用一种新颖的关键代码引导输入生成策略来彻底探索受影响的代码。具体而言,我们确定了两种类型的关键代码:路径前缀代码和数据后缀代码。关键代码首先引导输入生成逐渐、增量地到达更改位置。然后,在保持关键代码可达性的同时,输入生成策略进一步鼓励在探索受影响代码时生成输入的多样性。此外,WAFLGO 引入了一种轻量级多目标距离度量,用于直接和彻底检查所有更改点。我们实现了 WAFLG O,并使用提交引入的 30 个真实错误对其进行了评估。与 8 种最先进的工具相比,WAFLGO 实现了平均 10.3 × 的加速。此外,WAFLGO 在测试最近 50 次提交的真实软件(包括 libtiff、fig2dev 和 libming 等)时发现了 7 个新漏洞,其中包括 4 个 CVE。
图 1.改革后的解放军结构 ......................................................................................................................9 2.解放军高级军官,按级别划分(2015 年和 2021 年) ........................................................................10 3.解放军高级军官,按军种划分(2015 年和 2021 年)(%) .............................................................................12 4.陆军关键联合作战岗位军官(2015-2021 年)(%) .............................................................................12 5.解放军高级军官,按军种与军种人力份额划分(2022 年)(%) .............................................................................13 6.解放军高级军官,按类型划分(2015 年和 2021 年)(%) .............................................................................14 7.解放军高级军官年龄/经验年限,按职等划分(2021 年)................................................................................................................................17 8.过去 10 年的地理轮换(%)................................................................................................................19 9.过去 10 年的地理轮换,按职位类型划分(%).............................................................................20 10.过去 10 年的跨职能轮换(%).............................................................................................21 11.过去 10 年的职位类型轮换(%).............................................................................................22 12.过去 10 年(2015 年和 2021 年)的联合任务(%).............................................................23 13.过去 10 年的联合任务,按职等划分(%).............................................................................23 14.过去三年的联合任务各职级,按职务划分(2016-2022 年).....24 15.过去 10 年的联合任务,按部队划分(%).............................................................25 16.战区指挥官的职业发展,2016-2021 年.........................................................................27 17.各部队指挥官的职业发展,2016-2021 年.........................................................................27 18.解放军高级军官,按军种/战区划分(2015 年 vs. 2021 年).............................................31 19.各集团军的先前职务(2015 年 vs. 2021 年).............................................................31 20.在中央党政机关任职的解放军高级军官(2021 年).............................................................33 21.中共决策机关成员等级(2021年)......................................................34 22.第十三届全国人民代表大会代表(2021年).......................................35