可以证明,UCB的遗憾在渐近上是最佳的,请参见Lai和Robbins(1985),渐近的适应性分配规则;或2018年Bandit算法书籍的第8章在线可在线提供,网址为https://banditalgs.com/。
地方发展中心(CEDEL)和文化和土著研究中心(CIRIR),Villarrica Campus,Pontifical catulica cat的Villarrica校园农业与森林科学学院生态系统与环境系野生动植物实验室,宗教大学cat cat g olima de Chile,Avda。vicu〜na Mackenna 4860,Macul,Macul,大都会地区,智利C角国际全球变化研究与生物文化保护和生物文化保护中心(CHIC),De Magallanes大学和应用生态与可持续性中心(CAPES)智利D国家奥杜邦学会,奥杜邦美洲,伯纳多或希金斯501,维拉里卡,阿劳卡尼亚地区,智利
在本文中,我们提出了一个预测定向灰盒模糊测试器 DeepGo,它可以结合历史和预测信息来引导 DGF 通过最佳路径到达目标站点。我们首先提出路径转换模型,该模型将 DGF 建模为通过特定路径转换序列到达目标站点的过程。突变产生的新种子将导致路径转换,而高奖励路径转换序列对应的路径表示通过它到达目标站点的可能性很高。然后,为了预测路径转换和相应的奖励,我们使用深度神经网络构建虚拟集成环境 (VEE),它逐渐模仿路径转换模型并预测尚未采取的路径转换的奖励。为了确定最佳路径,我们开发了一个强化学习模糊测试 (RLF) 模型来生成具有最高序列奖励的转换序列。RLF 模型可以结合历史和预测的路径转换来生成最佳路径转换序列,以及指导模糊测试突变策略的策略。最后,为了练习高奖励路径转换序列,我们提出了行动组的概念,全面优化模糊测试的关键步骤,实现高效到达目标的最优路径。我们在 2 个基准测试套件(共 25 个程序,100 个目标站点)上对 DeepGo 进行了测试。实验结果表明,与 AFLGo、BEACON、WindRanger 和 ParmeSan 相比,DeepGo 在到达目标站点方面分别实现了 3.23 倍、1.72 倍、1.81 倍和 4.83 倍的加速比,在暴露已知漏洞方面分别实现了 2.61 倍、3.32 倍、2.43 倍和 2.53 倍的加速比。
新提交的提交容易将漏洞引入程序。作为一种有前途的对策,可以使用定向灰盒模糊测试器通过将提交更改位置指定为目标来测试提交更改。但是,现有的定向模糊测试器主要侧重于达到单个目标,而忽略了对其他受影响代码的多样化探索。因此,它们可能会忽略在远离更改位置的位置崩溃的错误,并且在多目标场景中缺乏直接性,这在提交测试的背景下都很常见。在本文中,我们提出了一种直接灰盒模糊测试器 WAFLG O ,以有效发现提交引入的漏洞。WAFLGO 采用一种新颖的关键代码引导输入生成策略来彻底探索受影响的代码。具体而言,我们确定了两种类型的关键代码:路径前缀代码和数据后缀代码。关键代码首先引导输入生成逐渐、增量地到达更改位置。然后,在保持关键代码可达性的同时,输入生成策略进一步鼓励在探索受影响代码时生成输入的多样性。此外,WAFLGO 引入了一种轻量级多目标距离度量,用于直接和彻底检查所有更改点。我们实现了 WAFLG O,并使用提交引入的 30 个真实错误对其进行了评估。与 8 种最先进的工具相比,WAFLGO 实现了平均 10.3 × 的加速。此外,WAFLGO 在测试最近 50 次提交的真实软件(包括 libtiff、fig2dev 和 libming 等)时发现了 7 个新漏洞,其中包括 4 个 CVE。
图 1.改革后的解放军结构 ......................................................................................................................9 2.解放军高级军官,按级别划分(2015 年和 2021 年) ........................................................................10 3.解放军高级军官,按军种划分(2015 年和 2021 年)(%) .............................................................................12 4.陆军关键联合作战岗位军官(2015-2021 年)(%) .............................................................................12 5.解放军高级军官,按军种与军种人力份额划分(2022 年)(%) .............................................................................13 6.解放军高级军官,按类型划分(2015 年和 2021 年)(%) .............................................................................14 7.解放军高级军官年龄/经验年限,按职等划分(2021 年)................................................................................................................................17 8.过去 10 年的地理轮换(%)................................................................................................................19 9.过去 10 年的地理轮换,按职位类型划分(%).............................................................................20 10.过去 10 年的跨职能轮换(%).............................................................................................21 11.过去 10 年的职位类型轮换(%).............................................................................................22 12.过去 10 年(2015 年和 2021 年)的联合任务(%).............................................................23 13.过去 10 年的联合任务,按职等划分(%).............................................................................23 14.过去三年的联合任务各职级,按职务划分(2016-2022 年).....24 15.过去 10 年的联合任务,按部队划分(%).............................................................25 16.战区指挥官的职业发展,2016-2021 年.........................................................................27 17.各部队指挥官的职业发展,2016-2021 年.........................................................................27 18.解放军高级军官,按军种/战区划分(2015 年 vs. 2021 年).............................................31 19.各集团军的先前职务(2015 年 vs. 2021 年).............................................................31 20.在中央党政机关任职的解放军高级军官(2021 年).............................................................33 21.中共决策机关成员等级(2021年)......................................................34 22.第十三届全国人民代表大会代表(2021年).......................................35
描述实现了树木相似性的度量,包括基于信息的广义鲁滨逊距离距离(系统发育信息距离,聚类信息距离,匹配的拆分信息距离;史密斯2020); Jaccard-Robinson-fivt距离(Bocker等人2013),包括Nye等。(2006)公制;匹配的分裂距离(Bogdanowicz&Giaro 2012);最大协议子树距离; Kendall-Colijn(2016)距离,以及最近的邻居交换(NNI)距离,近似于Per li等人。(1996)。包括用于可视化树空间映射的工具(史密斯2022),用于识别树木的岛屿(Silva and Wilkinson 2021),用于计算树木和树木的中间体,以计算树木和跨越树木的中间体。
树木调查将由市议会的树木检查员进行。树木检查员将首先检查已确定的调查区域,以确定调查区域内是否有可能造成伤害或损坏的树木。将进行 1 级树木检查,如果这些树木出现任何可见的缺陷、健康状况不佳的迹象或其他系统,以确定是否可以合理预见故障,则将进行 2 级树木检查,其中包括 QTRA 评估。这将告知树木的风险是不可接受的、一般可容忍的还是广泛可接受的,以及检查员将制定的降低风险等级所需的任何补救措施。
引言正在进行的全球变暖已经在改变植物物种的生长和地理分布(Doblas-Miranda等,2017; Vellend等,2017)。鉴于当前的快速变暖速率,预计全球温度将在2030年至2050年之间升高 +1.5°C(IPCC,2018年)。气候变化对自然生态系统的影响会导致植物物种地理分布范围的扩张,减少或变化(Lenoir等,2008)。因此,这些影响可能会对陆生能,水通量以及CO 2排放产生重大影响(Forzieri等,2020)。此外,这种变暖正在影响各个层面的生物多样性,从个人和社区到整个生态系统(Franklin等,2017)。在地中海地区观察到的,自然生态系统特别受到全球变暖和极端气候事件的影响(Doblas-Miranda等,2017; Lionello and Scarascia,2018)。因此,在预计的气候变化情景下对植物物种的地理分布的理解非常感兴趣(Franklin等,2017),特别是对于制定适应性良好的保护和管理计划的发展(Kozak等,2008)。评估植物物种对气候变化的脆弱性,物种分布模型(SDM)通常被越来越多地使用。这些模型通过基于环境因素插值和推断其分布来预测物种的地理范围(Guisan等,2017; Pecchi等,2019)。此外,物种分布模型为自然资源的保护和管理提供了全面的基础(Sinclair等,2010; Qin等,2017)。当前,有许多可用的SDM方法,例如Bioclim(Bioclimatic建模),域(域环境包膜),GAM(广义加性模型),MARS(多变量自适应回归光谱)和Maxent(Maxtainter(Maximak)(最大值)(Pecchi等人,2019年)。中,Maxent算法(Phillips等,2006)在提供仅存在的数据时提供了可靠的适合性结果,并且在处理广泛分布和稀有物种的出现方面具有很高的灵活性(Elith等,2006; Moukrim等,2019; Kassout等,2019; Kassout等,20222a)。例如,最大的熵模型已用于预测宏观生态模式(Harte,2011年),物种丰度分布(White等,2012),基于特质的社区组装(Shipley等,2011)和物种生态位模型在多个尺度上(Elith等,2010; Guisan等,2017,2017年)。Ceratonia Siliqua L.(豆科植物)是一种常绿,嗜热和二元的地中海果树(Batlle和Tous,1997; Baumel et al。,2018; Kassout等,2023),有一些稀有的Hermaphrodite和单调的案例(Batle and Batle和Toble和Tous)(1997)。Cacob(C。C. silliqua)是一棵缓慢生长的长树,对干旱具有很高的抵抗力,但对极度寒冷的抵抗力有限(Batlle和Tous,1997),这有助于其重要的遗传多样性(Viruel等,2019)和
ICFRE森林遗传学和树木育种,符合了一本关于“适合泰米尔纳德邦农林业系统的树种”的书。This book contains the complete information on particular tree species, weather and climatic condition for better growth, seed processing and germination techniques, quality seedling production, planting technique including spacing, weeding, irrigation pattern, fertilizer application, pest and disease control, growth and yield for economically important tree species viz., Casuarina, Sandal, Teak, Red Sanders, Mahogany, Ailanthus, Gmelina, etc.ICFRE-IFGTB的高级科学家分享了树种的详细信息,以汇编本书。此外,还包括有关主要害虫和疾病症状的一个特殊章节,以及托儿所和种植园中的控制措施。根据泰米尔纳德邦生物多样性和绿化计划的特别要求,TNFD提出了该出版物,这本书对于参与农民领域的农业库存系统的TNFD的树木种植者和TNFD的员工将非常有用。
