在本文中,我们提出了一个预测定向灰盒模糊测试器 DeepGo,它可以结合历史和预测信息来引导 DGF 通过最佳路径到达目标站点。我们首先提出路径转换模型,该模型将 DGF 建模为通过特定路径转换序列到达目标站点的过程。突变产生的新种子将导致路径转换,而高奖励路径转换序列对应的路径表示通过它到达目标站点的可能性很高。然后,为了预测路径转换和相应的奖励,我们使用深度神经网络构建虚拟集成环境 (VEE),它逐渐模仿路径转换模型并预测尚未采取的路径转换的奖励。为了确定最佳路径,我们开发了一个强化学习模糊测试 (RLF) 模型来生成具有最高序列奖励的转换序列。RLF 模型可以结合历史和预测的路径转换来生成最佳路径转换序列,以及指导模糊测试突变策略的策略。最后,为了练习高奖励路径转换序列,我们提出了行动组的概念,全面优化模糊测试的关键步骤,实现高效到达目标的最优路径。我们在 2 个基准测试套件(共 25 个程序,100 个目标站点)上对 DeepGo 进行了测试。实验结果表明,与 AFLGo、BEACON、WindRanger 和 ParmeSan 相比,DeepGo 在到达目标站点方面分别实现了 3.23 倍、1.72 倍、1.81 倍和 4.83 倍的加速比,在暴露已知漏洞方面分别实现了 2.61 倍、3.32 倍、2.43 倍和 2.53 倍的加速比。
新提交的提交容易将漏洞引入程序。作为一种有前途的对策,可以使用定向灰盒模糊测试器通过将提交更改位置指定为目标来测试提交更改。但是,现有的定向模糊测试器主要侧重于达到单个目标,而忽略了对其他受影响代码的多样化探索。因此,它们可能会忽略在远离更改位置的位置崩溃的错误,并且在多目标场景中缺乏直接性,这在提交测试的背景下都很常见。在本文中,我们提出了一种直接灰盒模糊测试器 WAFLG O ,以有效发现提交引入的漏洞。WAFLGO 采用一种新颖的关键代码引导输入生成策略来彻底探索受影响的代码。具体而言,我们确定了两种类型的关键代码:路径前缀代码和数据后缀代码。关键代码首先引导输入生成逐渐、增量地到达更改位置。然后,在保持关键代码可达性的同时,输入生成策略进一步鼓励在探索受影响代码时生成输入的多样性。此外,WAFLGO 引入了一种轻量级多目标距离度量,用于直接和彻底检查所有更改点。我们实现了 WAFLG O,并使用提交引入的 30 个真实错误对其进行了评估。与 8 种最先进的工具相比,WAFLGO 实现了平均 10.3 × 的加速。此外,WAFLGO 在测试最近 50 次提交的真实软件(包括 libtiff、fig2dev 和 libming 等)时发现了 7 个新漏洞,其中包括 4 个 CVE。
图 1.改革后的解放军结构 ......................................................................................................................9 2.解放军高级军官,按级别划分(2015 年和 2021 年) ........................................................................10 3.解放军高级军官,按军种划分(2015 年和 2021 年)(%) .............................................................................12 4.陆军关键联合作战岗位军官(2015-2021 年)(%) .............................................................................12 5.解放军高级军官,按军种与军种人力份额划分(2022 年)(%) .............................................................................13 6.解放军高级军官,按类型划分(2015 年和 2021 年)(%) .............................................................................14 7.解放军高级军官年龄/经验年限,按职等划分(2021 年)................................................................................................................................17 8.过去 10 年的地理轮换(%)................................................................................................................19 9.过去 10 年的地理轮换,按职位类型划分(%).............................................................................20 10.过去 10 年的跨职能轮换(%).............................................................................................21 11.过去 10 年的职位类型轮换(%).............................................................................................22 12.过去 10 年(2015 年和 2021 年)的联合任务(%).............................................................23 13.过去 10 年的联合任务,按职等划分(%).............................................................................23 14.过去三年的联合任务各职级,按职务划分(2016-2022 年).....24 15.过去 10 年的联合任务,按部队划分(%).............................................................25 16.战区指挥官的职业发展,2016-2021 年.........................................................................27 17.各部队指挥官的职业发展,2016-2021 年.........................................................................27 18.解放军高级军官,按军种/战区划分(2015 年 vs. 2021 年).............................................31 19.各集团军的先前职务(2015 年 vs. 2021 年).............................................................31 20.在中央党政机关任职的解放军高级军官(2021 年).............................................................33 21.中共决策机关成员等级(2021年)......................................................34 22.第十三届全国人民代表大会代表(2021年).......................................35
1. 包括换流站、电缆和其他用于输配电升级的设备 2. 地热和聚光太阳能发电 (CSP) 3. 此模型未包括公路汽车电池 4. 包括电池制造设备市场、热机储能和抽水蓄能水电 (PSH) 5. 包括采矿、船舶、建筑、物料搬运、国防、铁路和石油和天然气 6. 包括氢气生产、分配和储存、转换、运输、钢铁、现有原料、工艺电力和热力、备用和离网电力 注:分析并非详尽无遗 资料来源:BCG 分析
具有最先进的控制系统,它提供了带有高级数据监视的简单,无缝操作。它还结合了一个数字显示屏,其中包含完整的面板钢化玻璃和响应式背光照明,以实现高度精致的外观。传统游泳池热泵最多可高达69%。使用内置WiFi的Invergo应用程序,您可以安排何时以及如何直接从智能手机运行。在Apple App Store和Android Google Play上可用。
?-b0/10k+0.0bcu+k0 = as-1-a。+a?)?b+_- 1 <+9ds0b+d.k+= a_k0b+d99a_s+1 <0+nd.8pd/18b-.c+ap+ap+ap+ap+n891-t N01D99 - /+。0DB+.01+S ?+p-.-10+090n0.1+nak09+ap +1ap +1 <00 +9ds0b+k0 = as-1-1-1-a.++++++app+++ap++ap+ap+ap+ap+ap+ap+ap+ap+ap+ap+ap+ap+ap+ap+ap+ap+ap+ap+ap+ap+ap+s1d-+s1d-.90ss+s +s1009+ )?+SUS10NQ+H <0+K-PP8S-R0+0pp0/1s+ - 。k8/0k+Cu+Cu+18BC890。/0+DB0+D.D9UH0K+_- 1 <+ B0CDBK+1A+D+9DN-.DB+S-N89D1-A。+D.K+DB0+PA8.K+1A+)?+SUS10NQ+H <0+K-PP8S-R0+0pp0/1s+ - 。k8/0k+Cu+Cu+18BC890。/0+DB0+D.D9UH0K+_- 1 <+ B0CDBK+1A+D+9DN-.DB+S-N89D1-A。+D.K+DB0+PA8.K+1A+
警告: 电池若未妥善处理, 可能会导致爆炸。 请勿拆卸电池, 或用火销毁电池。 请将电池放置于儿童拿不到的地方。 请使用专用充电器充电, 并请依照当地政府或法律规定妥善处理废弃电池。 CAUTION: EXPLOSION HAZARD Do not disassemble, short circuit, heat the battery or dispose of in fire. Store battery pack in a proper place. Do not expose to temperature above 60℃/140℉. Use specified charger only. Please dispose of the used batteries following the rules or laws issued by the local government.
1. 电池燃料と二次电池のシテム最适化について ・ 本研究において燃料电池と二次电池のshisutemubaransuが重要である。 ・今后、特にエネルギー(kWh)のみならず、室内无人导航走体の使用方法を想定し
◆关于研究内容Shimokawa Kohei,Tohoku大学金属材料研究所高级和进化研究部电话:022-215-2390电子邮件:Kohei.shimokawa.b7@tohoku.ac.ac.ac.ac.ac.ac.ac.jp教授,结构控制材料材料研究部,TOHOKU CORIPESS RESICATION,TOHIM RESICATION-METAR RESSICY nimr:0.02222222222内戈亚技术学院工程研究生院Frontier研究所U.Ac.JP教授电话:052-735-5189电子邮件:masanobu@nitech.ac.ac.ac.jp◆关于报告信息计划办公室公共关系团队,Tohoku大学金属材料研究所传真:022-215-2482电子邮件:pro-adm.tohoku.ac.jp计划和公共关系部,纳戈亚技术研究所电话:052-735-5647电子邮件:pr@adm.nitech.ac.ac.ac.ac.ac.ac.ac.ac.ac.ac.ac.jp公共关系部,日本科学和技术机构电话:03-5214-8404-14-32-14 33-22 .jp(关于JST业务)Oya Katsu,日本科学与技术局的未来创建研发促进部电话:03-3512-3543电子邮件:alca@jst.go.jp
雄激素对于正常的卵巢功能和卵泡健康至关重要,但多囊卵巢综合征所见的雄激素过多症与卵泡发育障碍有关。关于接受性别肯定内分泌治疗的跨性别男性长期接触高水平睾酮的影响的数据很少。在本研究中,我们调查了睾酮对体内人类卵泡发育、形态健康、 DNA 损伤和修复能力以及体外卵泡存活率的影响。在卵巢切除术中,从接受术前睾酮治疗的跨性别男性(平均年龄:27.6 ± 1.7 岁;范围:20-34 岁,n = 8)获得了全卵巢。这与剖腹产时从年龄匹配的健康女性(平均年龄:31.8 ± 1.5 岁;范围:25-35 岁,n = 8)获得的皮质活检样本进行了比较。将皮质组织切成碎片,立即固定以进行组织学分析,或培养 6 天后再固定。通过用苏木精和伊红染色的组织切片和通过免疫组织化学 (IHC) 检测 γ H2AX 作为 DNA 损伤标志物的表达来评估卵泡分类和形态健康状况。在未培养的组织中,睾酮暴露与卵泡生长激活降低、卵泡健康状况不佳和 DNA 损伤增加有关。培养 6 天后,与对照组相比,卵泡激活增强,形态健康进一步恶化,DNA 损伤增加。这些数据表明,高循环浓度的睾酮会对卵巢的原始卵泡和小生长卵泡产生影响。这些结果可能对在考虑怀孕或生育力保存措施之前接受性别肯定疗法的跨性别男性产生影响。