与共面波导 (CPW) 谐振器相比,紧凑型电感电容 (LC) 谐振器具有简单的集总元件电路表示,但通常需要复杂的有限元法 (FEM) 模拟才能进行精确建模。这里,我们为一系列共面 LC 谐振器提供了一种简单的分析模型,其中的电气特性可以直接从电路几何形状中获得,并且具有令人满意的精度。我们对 10 个高内部品质因数谐振器(Q i ≳ 2 × 10 5)进行的实验结果,频率范围大约从 300 MHz 到 1 GHz,与推导的分析模型和详细的 FEM 模拟都显示出良好的一致性。这些结果展示了设计谐振频率偏差小于 2% 的亚千兆赫谐振器的能力,这具有直接的应用,例如,在超灵敏低温探测器的实现中。所实现的平方毫米量级的紧凑谐振器尺寸表明在单个芯片上集成数百个微波谐振器以实现光子晶格的可行方法。
我们研究了聚焦离子束沉积碳铂 (FIB C-Pt) 复合材料作为低温灵敏局部微温度计的用途,该复合材料可在器件制造的任何阶段无需使用掩模进行沉积。FIB 沉积是获得纳米级欧姆接触的常用方法 [20]。因此,它在这方面得到了广泛的研究。特别是,已经研究了 FIB C-Pt 的电阻率与成分 [21, 22, 23]、温度 [24, 25, 26, 27]、尺寸 [28, 29] 和沉积参数 [30, 31] 的关系。然而,FIB C-Pt 作为低温电阻温度计的潜力从未被研究过。虽然复合系统代表了一种新型的片上测温方法,但其成分元素 Pt [32, 33, 34, 35, 36, 37] 和 C [32, 38, 39] 已被用作电阻温度计,用于各种应用。对于纯 Pt 温度计,与大多数金属温度计一样,
本研究旨在探索人工智能 (AI) 在学习环境中作为解决思维技能发展挑战的潜力。通过使用人工智能技术,本研究着重于找出人工智能与学生辩论能力之间的关系。本研究采用的方法是定量和相关方法。研究结果表明,学习中的人工智能可以成为批判性和分析性思维能力发展的重要催化剂。在使用人工智能的学习环境中,学生在解决问题、信息分析和批判性思维方面表现出了进步,从而提高了他们的辩论能力。此外,学习效率也提高了,并激励学习者发挥出最大潜力。本研究有助于了解教育中的人工智能如何对辩论技能的发展产生积极影响。这些发现的实际意义可以为未来开发更有效、更个性化的学习策略打开大门,创造一个反应灵敏、适应性强的教育环境。
将组织活检基因组分析的结果与补充液体活检数据相结合,可以全面了解肿瘤生物学。Illumina Cell-Free DNA Prep with Enrichment 是一种多功能文库制备试剂盒,可用于从循环无细胞 DNA (cfDNA) 或从 FFPE 组织样本中提取的基因组 DNA (gDNA) 制备可用于测序的文库 (图 1)。该工作流程包括用于纠正错误和减少假阳性的唯一分子标识符 (UMI),从而能够准确、灵敏地检测 FFPE 肿瘤样本中的低频突变。Illumina Cell-Free DNA Prep with Enrichment 与 Illumina 和第三方富集探针或面板兼容,以支持灵活的实验设计。本应用说明展示了 Illumina Cell-Free DNA Prep with Enrichment 在生成高质量 NGS 文库和从 FFPE 样本中鉴定低频体细胞变异方面的优异性能。
捕获离子是激发离子运动的弱力和电场的灵敏探测器。这里报告了与施加的弱外力相位一致的捕获离子晶体质心运动的测量结果。这些实验是在大约 100 个离子的二维捕获离子晶体上远离陷阱运动频率进行的,并确定了我们的协议的基本测量不精确度,不受与质心模式相关的噪声的影响。通过使用振荡自旋相关光偶极力将离子晶体运动与离子的内部自旋自由度耦合来检测晶体的驱动正弦位移。由此产生的诱导自旋进动与晶体的位移幅度成正比,并以近投影噪声限制的分辨率进行测量。在一次实验测定中检测到 49 pm 的位移,信噪比为 1,这比以前的相位不相干实验提高了一个数量级。该位移幅度比零点波动小 40 倍。在我们的重复率下,8 。4 pm / √
南方印迹和北方印迹都是将核酸转移到膜上的分子生物学技术,随后通过杂交程序检测特定的核酸序列。南方印迹用于识别特定的 DNA 序列,例如找出生物体中存在多少个特定基因的拷贝,而北方印迹用于比较不同生物体之间的 mRNA 池。由于 RNAseq、微阵列和 RT-PCR 现在是分析物种间 mRNA 池的常用方法,有时也更灵敏,因此北方印迹现在不太常用。另一方面,南方印迹仍然是一种非常流行的方法,因为与 PCR 相比,它还可用于识别直系同源或旁系同源基因、外来基因的部分插入或基因组内特定基因的拷贝数,因为只需要知道基因的基本序列,而不需要知道特定的引物结合位点。由于如今很少进行北方印迹实验,因此本信息手册将主要关注南方印迹实验。
钙钛矿氧化物中的氧空位迁移和排序使得能够通过改变阳离子氧化态和晶格来操纵材料特性。在薄膜中,氧空位通常排列成等距平面。本文表明,如果机械纳米探针限制了空位产生的化学晶格膨胀,平面二维对称性就会被破坏。使用原位扫描透射电子显微镜,可以在局部机械应变下的电压脉冲过程中对外延 La 2/3 Sr 1/3 MnO 3– δ 薄膜中从钙钛矿结构到 3D 空位有序相的转变进行成像。这种前所未见的排序模式由扭曲的氧四面体、五面体和八面体的复杂网络组成,它们共同产生波纹原子结构,晶格常数在 3.5 到 4.6 Å 之间变化。巨大的晶格畸变对应变变化反应灵敏,为由电压驱动和应变控制的非挥发性纳米级物理特性控制提供了前景。
一种灵敏、低成本、响应速度快的室温气体传感器。1 目前,最常用的便携式气体传感器基于半导体金属氧化物。2,3 这种传感器技术的主要缺点之一是其工作温度通常高于 200°C,这会导致高功耗。4,5 在过去的几十年中,导电聚合物、6,7 2D 层状过渡金属二硫属化物、8 金属纳米粒子、9 石墨烯 10 和碳纳米管 11 等新型材料已被用来改善气体传感器的关键参数,如响应度、选择性、稳定性、检测限和响应/恢复时间。由于其卓越的电子和机械性能,加上对周围环境的极端敏感性,单壁碳纳米管 (SWCNT) 代表了开发新型传感器的一种非常有前途的替代方案。 12 – 19 通常,这些气体传感器采用 SWCNT-FET 设备的形式,并基于气体暴露触发的 SWCNT 电响应修改。15,17,20 – 26
教育和经验:社会科学、高等教育、社会或教育研究、心理学或相关领域的硕士学位。三年的研究经验,具备进行复杂分析的能力。两年的战略/年度规划工作经验。知识/专业领域:大型战略规划计划的专业知识。项目管理专业知识。定性和定量研究理论和方法知识。社区学院或类似环境中的机构规划知识。能力/技能:成功领导、管理和实施战略愿景。有积极主动、高度灵活和积极主动的记录。外向、有魅力、对文化反应灵敏。优秀的人际交往和沟通技巧(尤其是口头和书面)。善于理解他人的观点并关注他们的关切。擅长撰写技术报告。善于解决问题。善于组织项目、保存记录并关注细节。熟练使用技术(即高级 Microsoft Office 应用程序、其他基于 Web 的应用程序、在线数据库、互联网资源和规划平台。)
证据摘要和分析:磁共振成像 (MRI) 是一种经过验证且行之有效的脑部评估和评价成像方式。脑部 MRI 是目前最灵敏的技术,因为它能够高度灵敏地利用组织固有的对比度差异,而这种差异是磁弛豫特性和磁化率变化的结果。MRI 是一项快速发展的技术,持续的技术进步将继续改善脑部疾病的诊断。本实践参数概述了执行高质量脑部 MRI 的原则。脑部 MRI 的适应症包括但不限于:脑实质、脑膜或颅骨的肿瘤性疾病或其他肿块或肿块样疾病、血管疾病(缺血、梗塞、疾病、畸形异常、先天性疾病、创伤、出血、疾病(炎症、自身免疫、感染、内分泌、评估(脑神经、伴有相关神经系统发现的头痛、疑似脑结构异常)、癫痫、治疗随访和颅内压升高(ACR-ASNR-SPR,2019)。