人类胚胎和神经干细胞的使用具有局限性作为帕金森氏病(PD)1-3的细胞疗法。获得胚胎或胎儿细胞在道德上可能是挑战,而移植的胚胎并不总是很容易获得1,2,4。此外,它们不是自体组织,要求患者使用免疫抑制药物。其他干细胞来源包括自体诱导的多能干(IPS)细胞,分化为多巴胺能祖细胞。但是,它们在PD中的临床测试仍处于起步阶段5。此外,未完全重编程的细胞可以引起有害的免疫反应6,7。一种更可行的方法可能是使用人体自己的维修机制。自体组织,例如周围神经,具有强大的修复功能,很容易获得,并且可以有效地获得8,9。我们的策略是遵守患者自己的修复性周围神经组织和
摘要 —基于亚波长光栅跑道微环谐振器和游标效应,提出并论证了一种优化片上折射率传感器灵敏度和检测限的方法。亚波长光栅波导可以降低光场的结构限制,有利于增强光子与分析物之间的相互作用。通过优化亚波长光栅跑道微环谐振器的参数,传感器的灵敏度可以显著提高到 664 nm/RIU。随后,利用游标效应,设计了一种基于两级联微环的折射率传感器。由于游标效应,重叠峰之间的波长间隔可以有效放大十倍以上,从而获得高性能。结果表明,超高灵敏度为 7061 nm/RIU,检测下限为 1.74 × 10 −5 RIU。该集成装置具有超高灵敏度、低检测限等优点,在环境监测、生物传感器领域具有重要价值。
评估了使用脉冲 keV 离子束在透射几何中对薄膜和准二维系统进行灵敏的多元素分析的飞行时间反冲检测的潜力。虽然飞行时间方法允许同时检测多种元素,而最大程度上不受反冲电荷状态的影响,但 keV 射弹能量可保证高反冲截面,从而在低剂量下获得高灵敏度。我们展示了该方法的能力,使用 22 Ne 和 40 Ar 作为射弹,穿过具有可选 LiF 涂层和单晶硅膜的薄碳箔,以用于不同的样品制备程序和晶体取向。使用大型位置灵敏探测器(0.13 sr),深度分辨率低于 6 nm,灵敏度低于 10 14
本文档中包含的材料是“原样”提供的,并且可能会在将来的编辑中更改,恕不另行通知。此外,在适用法律允许的最大范围内,关于本手册和本文所包含的任何信息,包括但不限于对特定目的的适销性和适应性的暗示性。agilent对于与本文档的家具,使用或性能或此处包含的任何信息有关的错误或偶然或造成的损害不得犯。应安捷伦和用户有单独的书面协议,其保修条款涵盖了本文件中与这些条款相抵触的材料,则独立协议中的保修条款应控制。
©2021。此手稿版本可在CC-BY-NC-ND 4.0许可下提供http://creativecommons.org/licenses/by-nc-nc-nd/4.0/。
1 圣保罗生物医学研究所(IIB-Sant Pau),08041 巴塞罗那,西班牙; emedina@santpau.cat (EM-G.); mcespedes@santpau.cat (MVC); erioja@santpau.cat (ER-B.); lalba@santpau.cat(洛杉矶-C.) uunzueta@santpau.cat (UU) 2 西班牙巴塞罗那 Leuc è mia Recerca contra Josep Carreras 研究所,08025,西班牙 3 西班牙巴塞罗那圣克鲁伊圣保罗医院病理学系,08041; agallardoa@santpau.cat 4 Institut Catal à d'Oncologia (ICO), 08908 L'Hospitalet de Llobregat,西班牙; mpavon@iconcologia.net (M. À .P.); lfarre@iconcologia.net (LF) 5 CIBER 公共卫生流行病学研究所 (CIBERESP),28029 马德里,西班牙 6 贝尔维特奇生物医学研究所 (IDIBELL),08908 L'Hospitalet de Llobregat,西班牙 7 加泰罗尼亚肿瘤研究所 (ICO),Oncobell 项目,贝尔维特奇生物医学研究所 (IDIBELL),08908 L'Hospitalet del Llobregat,西班牙; lasensio@idibell.cat 8 CIBER de Bioingenieri í a, Biomateriales y Nanomedicina (CIBER-BBN), 28029 马德里, 西班牙; antoni.villaverde@uab.cat 9 巴塞罗那自治大学遗传学和微生物学系,08193 Bellaterra,西班牙 10 巴塞罗那自治大学生物技术与生物医学研究所,08193 Bellaterrac,西班牙(Estherracquet:EV. icasanova@santpau.cat (IC); rmangues@santpau.cat (RM)
目的:评估夜间心率(HR)和人力资源变异性(HRV)的可靠性,并分析这些标记对最大耐力运动的敏感性。方法:在经过2个相同的低强度训练课程(n = 15)和3000米跑步测试(n = 23)之前和之后的晚上和之后,夜间记录了夜间人力资源和HRV(n = 15)。平均HR,连续差异(LNRMSSD)的根平方的自然对数以及高频功率(LNHF)的自然对数(从整夜(完整),4小时(4H)部分开始,基于在lineAreare a lineare a in the Nightiptiont of lineare a a时,一个4小时(4h)段开始了30分钟。用一般线性模型分析夜晚之间的差异,并将类内相关系数(ICC)用于实习生可靠性评估。结果:在夜晚,随后进行低强度训练课程之间,所有指数都是相似的。在所有分析段中都观察到一个非常高的ICC(P <.001),HR范围为0.97至.98,LNRMSSD的HR范围为.97至.97,而LNHF的范围为.92至.97。hr增加(p <.001),而LNRMSSD(p <.01)和LNHF(p <.05)在3000米后测试后仅减少,而前一天晚上仅在4H中仅为4H且完整。与全和MOR相比,HR(P <.01)的增量(P <.01)和LNRMSSD的减少(P <.05)更大。结论:夜间人力资源和HRV指数非常可靠。要求最大运动可以增加人力资源,并在4H和完整段中最有系统地减少HRV。
摘要:如今,世界上许多地方都制定了区域空气污染战略,以限制和降低跨政府边界的污染水平,并控制其对人类健康和生态系统的影响。环境保护是世界范围内的首要任务之一。由于这一研究领域是社会的痛点,也是医疗保健系统的基本课题,因此存在许多挑战。敏感性分析在验证大规模空气污染计算模型以确保其准确性和可靠性的过程中起着根本性的作用。我们应用最佳的随机算法对 UNI-DEM 模型进行多维敏感性分析,该模型在管理构成预测和分析可能气候变化后果基础的许多自治系统和数据方面发挥着关键作用。我们开发了两个具有特殊生成矩阵的新的高度收敛数字序列,与用于测量数字生态系统敏感性指标的现有最佳随机方法相比,它们显示出显着的改进。通过敏感性分析获得的结果将发挥极其重要的多方面作用。
2 泰国微电子中心(TMEC)、国家电子和计算机技术中心、国家科学技术发展局、Chachoengsao 24000,泰国电子邮件:a s6209091960016@email.kmutnb.ac.th,b,* ekachai.j@tggs.kmutnb.ac.th(通讯作者),c hwanjit.rattanasonti@nectec.or.th,d putapon.pengpad@nectec.or.th,e karoon.saejok@nectec.or.th,f chana.leepattarapongpan@nectec.or.th,g ekalak.chaowicharat@nectec.or.th,h wutthinan.jeamsaksiri@nectec.or.th 摘要。本文针对低压工作范围提出了一种改进的微机电系统 (MEMS) 压阻式压力传感器设计,该传感器由花瓣边缘、横梁、半岛、三个横梁和一个中心凸台组合而成,以提高传感器性能,即灵敏度和线性度。利用有限元法 (FEM) 预测 MEMS 压阻式压力传感器在 1-5 kPa 施加压力下的应力和挠度。利用幂律制定纵向应力、横向应力和挠度的函数形式,然后将其用于优化所提设计的几何形状。仿真结果表明,所提设计能够产生高达 34 mV/kPa 的高灵敏度,同时具有 0.11% 满量程 (FSS) 的低非线性。半岛、三个横梁和中心凸台的设计降低了非线性误差。通过增加花瓣边缘宽度可以提高灵敏度。还将所提设计的传感器性能与文献中先前的设计进行了比较。比较结果表明,所提设计的性能优于先前的设计。关键词:MEMS、压阻式压力传感器、有限元法、灵敏度、线性度。
正如在太阳能电池制备中大热的铅基钙钛矿一样,铋基钙钛矿在直接X射线检测中也表现出了优异的性能,尤其是Cs 3 Bi 2 I 9 单晶(SC)。但与铅卤化物钙钛矿相比,Cs 3 Bi 2 I 9 SC在X射线检测应用方面的一个挑战是难以制备大尺寸和高质量的SC。因此,如何获得大面积高质量的晶片也与Cs 3 Bi 2 I 9 生长方法研究一样重要。这里,使用不同的反溶剂制备多晶粉末,采用反溶剂沉淀法(A),作为对照,还采用高能球磨法(B)制备多晶粉末。制备的两种Cs 3 Bi 2 I 9 晶片的微应变为1.21 × 10 −3 ,电阻率为5.13 × 10 8 Ω·cm ,微应变为1.21 × 10 −3 ,电阻率为2.21 × 10 9 Ω·cm 。基于高质量Cs 3 Bi 2 I 9 晶片的X射线探测器具有良好的剂量率线性度,灵敏度为588 µC∙Gy air s −1 ∙cm −2 ,检测限(LoD)为76 nGy air ∙s −1 。
