使用已建立的云聚类方法分析摘要耦合模型对比项目阶段6(CMIP6)模型。这可以比较模型和观察中的云表示。显示南大洋上层云的模拟已显示出从早期模型中发生的很大变化。分析的CMIP6模型表明,在模拟中比国际卫星云气候项目(ISCCP)观测值更频繁地发生层云,但与云和地球的辐射能量系统(CERES)数据相比还不够明亮。这与“太少,太明亮”的问题形成鲜明对比,后者表征了层状云的先前模型模拟,尤其是在南大洋上。云簇还可以计算模型数据中的均值和补偿短波云辐射效应(SW CRE)错误。补偿错误显示出比平均误差大得多,表明CMIP6模型在其云表示方面仍然有很多改进。确定了南大洋的SW CRE中的平均值和补偿错误之间具有统计学意义的负相关关系。在其他地方观察到这种关系,但仅在南大洋中很重要。这意味着模型调整工作在该区域的云表示中隐藏了偏见。相对于CMIP5模拟, CMIP6模型的气候灵敏度(EC)具有较高的平衡气候灵敏度。CMIP6模型的气候灵敏度(EC)具有较高的平衡气候灵敏度。研究了ECS与SW CRE平均值与补偿错误之间的联系,但没有发现这些变量之间存在关系的证据。
抽象的碳化硅陶瓷由于其高抗压强度,高硬度和低密度而被广泛用于装甲保护。在本研究中,开发了一种基于板块影响技术的实验技术来测量陶瓷材料的拉伸强度。由于陶瓷的强度不通过动态载荷对应变速率高度敏感,因此使e效率保持在失败位置保持恒定的应变速率。数值模拟被用于设计几种波动加工的板层的几何形状,该板在冲击时会产生脉冲形的压缩波,平滑的上升和下降时间范围为0.65至1 µs。这种减震板损坏的实验是在设定在200至450 m/s之间的撞击速度的SIC陶瓷上进行的。多亏了激光干涉法分析,目标后面速度可在给定的应变率载荷下测量均方根骨架强度。使用脉冲载荷和实验确定的脉冲强度,通过弹性塑料数值模拟评估了故障区中的应变速率。在适当的板板设计时,发现板撞击技术可以正确控制良好的应变速率载荷,左右在10 4 -10 5 s-1左右,可以达到相对较长的上升时间。这项工作有望提供合适的工具来研究陶瓷材料的高应变率行为。
人类胚胎和神经干细胞的使用具有局限性作为帕金森氏病(PD)1-3的细胞疗法。获得胚胎或胎儿细胞在道德上可能是挑战,而移植的胚胎并不总是很容易获得1,2,4。此外,它们不是自体组织,要求患者使用免疫抑制药物。其他干细胞来源包括自体诱导的多能干(IPS)细胞,分化为多巴胺能祖细胞。但是,它们在PD中的临床测试仍处于起步阶段5。此外,未完全重编程的细胞可以引起有害的免疫反应6,7。一种更可行的方法可能是使用人体自己的维修机制。自体组织,例如周围神经,具有强大的修复功能,很容易获得,并且可以有效地获得8,9。我们的策略是遵守患者自己的修复性周围神经组织和
摘要:由光子晶体纤维(PCF)组成的表面等离子体共振(SPR)传感器设计用于检测低浓度的液体。出色的传感特性归因于表面等离子体偏振子(SPP)模式的分散点(DTP)的灵敏度增强。传感器由两个相同且结构上简单的D形PCF以及与分析物直接接触在抛光表面上的等离子薄膜组成。折射率(RI)的变化导致退化等离子体峰分裂,从而通过测量峰分离来监测分析物浓度变化。在1.328 RIU和1.33 RIU之间,传感器的超高灵敏度为129,800 nm/riU,比未敏化的单个D形结构高37.22倍。与在覆层模式DTP附近运行的纤维光栅传感器相比,剪接的双D形PCF仍然具有高度高的机械强度。此外,可以通过调节缝隙宽度来更改传感器的RI检测范围。在0g/l至100 g/l的氯化钠浓度范围内,平均敏感性为4.38 nm/g·l -1,在0g/l至20 g/l的血红蛋白浓度范围内,0g/L至100 g/l和20.85 nm/g·l -1。我们的结果表明,基于PCFS的SPR传感器在多种应用中具有较大潜力,尤其是生物化学,因为它具有出色的灵敏度,结构性的简单性和可调节的检测范围。
2 泰国微电子中心(TMEC)、国家电子和计算机技术中心、国家科学技术发展局、Chachoengsao 24000,泰国电子邮件:a s6209091960016@email.kmutnb.ac.th,b,* ekachai.j@tggs.kmutnb.ac.th(通讯作者),c hwanjit.rattanasonti@nectec.or.th,d putapon.pengpad@nectec.or.th,e karoon.saejok@nectec.or.th,f chana.leepattarapongpan@nectec.or.th,g ekalak.chaowicharat@nectec.or.th,h wutthinan.jeamsaksiri@nectec.or.th 摘要。本文针对低压工作范围提出了一种改进的微机电系统 (MEMS) 压阻式压力传感器设计,该传感器由花瓣边缘、横梁、半岛、三个横梁和一个中心凸台组合而成,以提高传感器性能,即灵敏度和线性度。利用有限元法 (FEM) 预测 MEMS 压阻式压力传感器在 1-5 kPa 施加压力下的应力和挠度。利用幂律制定纵向应力、横向应力和挠度的函数形式,然后将其用于优化所提设计的几何形状。仿真结果表明,所提设计能够产生高达 34 mV/kPa 的高灵敏度,同时具有 0.11% 满量程 (FSS) 的低非线性。半岛、三个横梁和中心凸台的设计降低了非线性误差。通过增加花瓣边缘宽度可以提高灵敏度。还将所提设计的传感器性能与文献中先前的设计进行了比较。比较结果表明,所提设计的性能优于先前的设计。关键词:MEMS、压阻式压力传感器、有限元法、灵敏度、线性度。
在地下矿山中使用电池电动汽车(BEV)比传统使用柴油机提供了重大好处:通过产生零有毒气体和柴油机颗粒物(DPM)排放并降低热量和噪音水平,更健康的工作条件。其他好处包括潜在的降低通风和空调成本以及潜在的温室气体排放量。尽管如此,在地下地雷中使用BEV仍然有限。许多原因之一是,BEV的消防安全仍然不太了解。BEV的火灾风险与柴油机的火灾风险不同。BEV不带大量可燃液体(柴油燃料和发动机机油)。 他们也没有热排气系统。 但是,由于最初的火灾被扑灭后电池重新燃烧的可能性,BEV大火熄灭了。 目前,没有足够的数据表明,与地下矿山中的柴油大火相比,BEV大火更普遍或更危险,并且没有与地下矿山BEV火灾有关的记录死亡。 尽管如此,在地下矿山中,BEV大火的后果比柴油大火更高,因为熄灭要困难得多。 因此,地下矿山对BEV消防安全有足够的了解至关重要。 本文概述了防止热失控的措施,这是BEV火灾的主要原因,以及如何手动扑灭BEV火灾并管理地下地雷的电池充电防护区。BEV不带大量可燃液体(柴油燃料和发动机机油)。他们也没有热排气系统。但是,由于最初的火灾被扑灭后电池重新燃烧的可能性,BEV大火熄灭了。目前,没有足够的数据表明,与地下矿山中的柴油大火相比,BEV大火更普遍或更危险,并且没有与地下矿山BEV火灾有关的记录死亡。尽管如此,在地下矿山中,BEV大火的后果比柴油大火更高,因为熄灭要困难得多。因此,地下矿山对BEV消防安全有足够的了解至关重要。本文概述了防止热失控的措施,这是BEV火灾的主要原因,以及如何手动扑灭BEV火灾并管理地下地雷的电池充电防护区。
在本技术说明中,Sciex 7500系统上的技术创新被利用以提高许多具有挑战性的法医工作流程的灵敏度和总体量化性能。通过比较Sciex 7500系统和上一代仪器QTRAP 6500+系统上观察到的信号来研究这些灵敏度增长的影响。结果显示了检测下限(LLOD)和定量(LLOQ)的改进,这些限制提供了常规,鲁棒检测从具有挑战性的生物矩阵中提取的超低分析物的能力。这种提高的灵敏度还可以使较小的样品和注射体积可显着最大程度地减少矩阵干扰,因此提供了更一致的电离。结果还表明,可以利用增加的灵敏度来简化样本准备程序,从而提高了常规分析的生产率。能够分析这些化合物而无需艰苦且耗时的样本准备程序,提高了整体运营效率和吞吐量,从而使法医测试实验室能够超过其当前的生产率水平。
目的:确认液体衰减反转恢复 (FLAIR) 相较于传统快速自旋回波 MR 成像在检测脊髓多发性硬化症 (MS) 方面的预期优势。方法:前瞻性研究了 15 名已知患有脊髓和大脑 MS 的受试者。使用 1.5-T MR 系统上的相控阵线圈对整个脊髓进行成像。矢状 T1 加权和快速自旋回波质子密度和 T2 加权图像之后是快速 FLAIR 图像。改变 FLAIR 参数以优化病变的显著性,最佳反转时间 (TI) 范围为 2400 至 2600。三位放射科医生比较了快速自旋回波和 FLAIR 图像之间的病变显著性和检测率,并达成共识。结果:FLAIR 技术在所有情况下均能有效抑制脑脊液 (CSF) 信号并减少 CSF 脉动和截断伪影。较短的成像参数(重复时间为 4000 至 6000,TI 为 1500 至 2000)一致降低了所有受试者的病变明显性。在使用较长参数(重复时间为 8000 至 11000,TI 为 2400 至 2600)成像的 5 名受试者的 11 个脊髓病变中,有 3 个在 FLAIR 图像上未显示,4 个在 FLAIR 图像上不太明显,4 个在 FLAIR 图像上显示相同或更好。结论:尽管快速 FLAIR 成像在抑制 CSF 信号和减少成像伪影方面取得成功,但在检测脊髓 MS 病变方面似乎并不可靠。
摘要 —基于亚波长光栅跑道微环谐振器和游标效应,提出并论证了一种优化片上折射率传感器灵敏度和检测限的方法。亚波长光栅波导可以降低光场的结构限制,有利于增强光子与分析物之间的相互作用。通过优化亚波长光栅跑道微环谐振器的参数,传感器的灵敏度可以显著提高到 664 nm/RIU。随后,利用游标效应,设计了一种基于两级联微环的折射率传感器。由于游标效应,重叠峰之间的波长间隔可以有效放大十倍以上,从而获得高性能。结果表明,超高灵敏度为 7061 nm/RIU,检测下限为 1.74 × 10 −5 RIU。该集成装置具有超高灵敏度、低检测限等优点,在环境监测、生物传感器领域具有重要价值。
摘要纳米钻阵列与光电探测器的组合可以成为SI平台上大规模制造微型和具有成本效益的折射率传感器的策略。然而,互补的金属 - 氧化物 - 血管导体(CMOS)制造过程尤其是在可用于制造结构的材料上的限制。在这里,我们专注于使用CMOS兼容的过渡金属氮化钛(TIN)来制造纳米孔阵列(NHAS)。我们研究了使用高精度工业工艺制造的锡NHA的光学性质(50 nm,100 nm和150 nm),用于在集成的等离子,等离子折射指标传感器中使用。反射率测量显示出明显的Fano形共振,共振长度在950至1200 nm之间,这可以归因于通过NHA的非凡光学传输(EOT)。使用测量的材料介电常数作为输入,测得的光谱是通过具有很高准确性的模拟来重现的:模拟和测量的共振波长偏离小于10 nm,平均在30°和40°°的发病角度下观察到的平均4 nm偏差为4 nm。我们的实验结果表明,锡层从50到150 nm的厚度增加导致灵敏度从614.5 nm/riU增加到765.4 nm/riU,我们将其归因于具有空间扩展SPPS的孔中的单个LSPR之间的强耦合。我们的结果可用于提高锡NHA在片上等离子折射率传感器中的应用。