向更脱碳,弹性和分布式能源系统的过渡需要当地倡议,例如智能本地能源系统(SLE),这会导致社区获得自给自足并成为电力岛。尽管最近已经部署了许多SLES项目,但其中只有少数已经成功地取得了成功,这主要是由于SLES规划和部署阶段的初步知识差距。本文利用英国在奥克尼群岛最大的SLE示威者的知识,名为“反应灵活性”项目(Reflex)项目,提出了一个框架,该框架将有助于社区成功实施SLES。首先,本文介绍了在奥克尼(Orkney)中实施的多功能电SLE如何减少能量转变对电基础设施的影响。我们根据对英国SLES项目的审查,确定并讨论成功SLE的主要推动因素和障碍。第二,为了帮助未来的社区实施SLE,我们将智能网格体系结构模型(SGAM)扩展到一个全面的多向量智能智能本地能源体系结构模型(SLEAM),其中包括所有主要能源服务,即电力,热量和运输。此扩展体系结构模型描述了需要在全面的SLE中解决的主要组件和交互层。接下来,为了告知SLE的成功部署,建议并为Reflex项目提供了广泛的SLE关键性能指标列表。最后,我们讨论了从Reflex项目中学到的经验教训,我们列出了所需的未来技术,使社区,能源政策制定者和监管机构能够为能源过渡做准备。
摘要:能源转型是一项多学科挑战,需要稳健且可持续的解决方案。能源灵活性是能源转型的关键支柱之一,是一个涵盖在电网各个层面实施的多种创新解决方案的总称,以确保电能质量标准以及其他目标。另一方面,低技术强调设计、生产和可持续实施解决方案。因此,考虑到能源转型的多学科性质和现有的能源灵活性解决方案,本研究工作的目的是多方面的:首先,它提出了低技术的概念及其相关机制;然后,它解决了低技术可能与其他创新方法存在的误解和相似之处;最后,它使用低技术作为工具对现有的灵活性解决方案进行了评估。评估结果以定性方式呈现,表明间接能源灵活性解决方案在低技术规模上的排名高于供应侧能源灵活性解决方案和能源存储灵活性解决方案。
The GeoSmart project aims to optimise and demonstrate innovations to improve the flexibility and efficiency of geothermal heat and power systems, specifically: • Energy storage and power block management innovations to provide daily flexibility for “dispatchability''- to ramp up and down to the extent and speed required to fill the gaps between the sporadic and “duck curve” demand curves and the supply curves from solar and wind; • Integration of more flexible organic Rankine (兽人)可以应付电力市场需求的变化;拟议的创新将在Insheim
((注释)1。由DBJ创建。((注释)2。trl(技术准备水平)基于国际能源机构的分类。((注释)3。TRL 1–3 =基础研究阶段,TRL 4–6 =应用研究阶段,TRL 7–8 =演示阶段,(注释)3。TRL 9–10 =商业化阶段,TRL 11 =成熟技术。
在一个上下文中似乎很明显的话,如果该上下文发生变化,则可以具有完全不同的含义。11尽管已经广泛研究了与上下文相关的推论,但一个基本问题仍然存在:12大脑如何同时推断感觉输入的含义和基本的13个上下文本身,尤其是当上下文在变化时?在这里,我们研究了灵活的感知分解14个 - 能够迅速适应而无需反复试验的上下文转移的能力。我们在动态环境中引入了15个新颖的变更检测任务,需要跟踪潜在状态和16个上下文。我们发现,小鼠表现出对潜在上下文的第一审判行为适应,而不是推理而不是奖励反馈。通过在可观察到的马尔可夫决策过程中得出贝叶斯最佳政策,我们表明,快速适应从内部信念状态的顺序19个更新中出现。此外,我们还表明,通过20枚强化学习训练的人工神经网络实现了近距离的性能,从而在其复发性动态中实现了类似贝叶斯推理的21种机制。这些网络开发了灵活的内部代表 - 22个tations,可以实时调整推理模型。我们的发现建立了灵活的23感知推断,作为认知灵活性的核心原理,为在不确定环境中的适应性行为提供了计算和24个机械性见解。25
摘要 随着扩展成为大规模量子 (LSQ) 计算的关键问题,硬件控制系统的资源成本将变得越来越高。本文介绍了一种适用于自旋量子位的信号生成紧凑型直接数字合成 (DDS) 架构,该架构在波形精度和同步通道数量方面是可扩展的。该架构可以以 5 GS/s 的速度产生斜坡、频率梳和任意波形生成 (AWG) 的可编程组合,最坏情况下的数字反馈延迟为 76.8 ns。基于 FPGA 的系统具有高度可配置性,并利用比特流切换来实现可扩展校准所需的高灵活性。该架构还提供 GHz 速率多路复用 I/Q 单边带 (SSB) 调制,用于可扩展反射测量。该架构已在 Xilinx ZCU111 FPGA 上的硬件中得到验证,展示了复杂信号的混合以及多路复用控制和测量的频率梳生成的质量。这种设计的主要优势在于提高了数模转换器 (DAC) 频率斜坡的控制能力,与现有的基于 AWG 的架构相比,内存需求降低了几个数量级。单通道硬件非常紧凑,默认配置下,一个 DAC 通道仅占用 2% 的 ZCU111 逻辑资源,为集成反馈、校准和量子误差校正 (QEC) 留下了大量电路资源。
摘要:柔性金属有机骨架 (MOF) 在外界刺激下会发生可逆的结构转变。某些 MOF 的一个有趣特性是它们能够响应特定客体而弯曲,从而实现选择性分离。在这里,我们介绍了 MUF-15-OMe ([Co 6 (μ 3 -OH) 2 (ipa-OMe) 5 (H 2 O) 4 ]),它是 MUF-15 的一种变体,由通过 5-甲氧基间苯二甲酸酯 (ipa-OMe) 配体连接的六核钴 (II) 簇组成。MUF-15 本身具有间苯二甲酸酯连接基,在吸收常见气体时不灵活。另一方面,MUF-15-OMe 在压力低于 1 bar 时会弯曲 CO 2 和 C2 烃类等气体,这由其气体吸附等温线中的不同步骤揭示。计算分析表明,潜在机制涉及骨架连接体中羧基之一的部分分离。通过在多元骨架中用间苯二甲酸酯配体替换部分 ipa-OMe,可以调节诱导骨架动力学所需的气压。MUF-15-OMe 的弯曲为吸附特定的额外气体分子打开了空间。这增强了 CO 2 和 N 2 的分离,并使得通过量子筛分能够区分 H 2 和 D 2。通过清楚地说明灵活性如何区分气体混合物,这项研究为使用动态 MOF 进行具有挑战性的分离奠定了基础。
在发布时正确的信息。可能会发生变化。牛津纳米孔技术,车轮图标,Elysion,Epi2Me,Gridion,Minion,Mintion,Minknow和Promethion是注册的商标或牛津Nanopore Technologies PLC在各个国家 /地区的商标应用程序。本文所包含的信息可以受牛津纳米孔技术待定的专利或专利保护。所有其他品牌和名称都是其各自所有者的财产。©2025牛津纳米孔技术plc。保留所有权利。牛津纳米孔技术产品不适用于健康评估或诊断,治疗,缓解,治愈或预防任何疾病或病情。BR_1223(en)_v4_29Jan2025
对可再生能源产生的投资是过渡到可持续能源和能源系统的重要组成部分。在这方面,托管能力(HC)的概念是可再生发电的投资者和系统运营商确定最大数量连接可再生资源的有用工具,而无需修改或加强网格。然而,现有研究的相当一部分涉及分销系统中问题的技术要求,同时忽略了传输系统和市场范围。可再生生成吸收减少了对电力部门中化石燃料资源的依赖,同时还表现出满足系统灵活性需求的能力。本文提出了一种基于市场的方法,以最大限度地考虑能源和灵活性市场的传输系统中可再生的HC。为此,开发了一个双重优化问题,以研究最大化可再生生成HC的盈利能力。在上层问题中,关于新一代投资的非负盈利能力,开发了HC最大化。较低级别的问题解决了能源和灵活性市场的社会福利最大化,在这些市场中,新的可再生能源产生可以参与其中。将配方转移到单级混合刻板线性编程(MILP)问题中,以避免双重模型的非线性。所提出的模型应用于2总线说明性示例和IEEE 24总线可靠性测试系统(RTS)。结果表明,可再生生成单元可以通过参与灵活性市场来提高其盈利能力,从而从市场的角度增加可再生的HC。
碳中和能源系统愿景致力于增进 ENTSO-E 社区内部的理解,并进行外部沟通,提高人们对灵活性在管理未来电力系统中至关重要性的认识。在 2023 年 3 月发布《电力市场设计改革》(EMDR)后,欧盟委员会确认了灵活性的重要性,并提议引入国家灵活性需求评估,以支持成员国确定灵活性目标。由此产生的修订法规于 2024 年 7 月生效,该法规要求 ENTSO-E 与欧盟 DSO 实体一起设计根据这一授权进行国家评估的方法。这项研究对于建立对这个复杂主题的见解和知识至关重要,并为定义这种方法奠定了基础,该方法目前正在制定中,预计将于 2025 年 4 月完成。