对可再生能源产生的投资是过渡到可持续能源和能源系统的重要组成部分。在这方面,托管能力(HC)的概念是可再生发电的投资者和系统运营商确定最大数量连接可再生资源的有用工具,而无需修改或加强网格。然而,现有研究的相当一部分涉及分销系统中问题的技术要求,同时忽略了传输系统和市场范围。可再生生成吸收减少了对电力部门中化石燃料资源的依赖,同时还表现出满足系统灵活性需求的能力。本文提出了一种基于市场的方法,以最大限度地考虑能源和灵活性市场的传输系统中可再生的HC。为此,开发了一个双重优化问题,以研究最大化可再生生成HC的盈利能力。在上层问题中,关于新一代投资的非负盈利能力,开发了HC最大化。较低级别的问题解决了能源和灵活性市场的社会福利最大化,在这些市场中,新的可再生能源产生可以参与其中。将配方转移到单级混合刻板线性编程(MILP)问题中,以避免双重模型的非线性。所提出的模型应用于2总线说明性示例和IEEE 24总线可靠性测试系统(RTS)。结果表明,可再生生成单元可以通过参与灵活性市场来提高其盈利能力,从而从市场的角度增加可再生的HC。
碳中和能源系统愿景致力于增进 ENTSO-E 社区内部的理解,并进行外部沟通,提高人们对灵活性在管理未来电力系统中至关重要性的认识。在 2023 年 3 月发布《电力市场设计改革》(EMDR)后,欧盟委员会确认了灵活性的重要性,并提议引入国家灵活性需求评估,以支持成员国确定灵活性目标。由此产生的修订法规于 2024 年 7 月生效,该法规要求 ENTSO-E 与欧盟 DSO 实体一起设计根据这一授权进行国家评估的方法。这项研究对于建立对这个复杂主题的见解和知识至关重要,并为定义这种方法奠定了基础,该方法目前正在制定中,预计将于 2025 年 4 月完成。
弗劳恩霍夫应用研究促进协会总部位于德国,是全球领先的应用研究组织。该协会专注于面向未来的关键技术,并将研究成果应用于商业和工业,在创新过程中发挥着核心作用。作为创新发展和科学卓越的指南和推动力,该协会帮助塑造我们的社会和未来。该组织成立于 1949 年,目前在德国运营 76 个研究所和研究机构。超过 30,000 名员工,其中大多数接受过自然科学或工程学培训,每年的研究经费达 29 亿欧元。合同研究占这一总额的 25 亿欧元。
月亮是研究深空血浆和能量颗粒环境的独特位置。在其围绕地球的大部分轨道上,它直接暴露于太阳风中。由于没有全局固有磁场和碰撞气氛,太阳风和太阳能颗粒几乎没有偏离或吸收而到达,并直接影响其表面,与月球雷隆和脆弱的月球外层相互作用。到达月球表面的能量颗粒可以吸收或散射,也可以通过溅射或解吸从月球岩石中去除另一个原子。同样的现象也发生在银河宇宙射线中,它呈现典型的行星际空间的通量和能量光谱。在5 - 6天的每个轨道中,月亮越过陆地磁层的尾部。然后,它提供了在陆地磁尾等离子体环境以及大气从地球电离层中逃脱的可能性,以重离子的形式加速并向下流动。月球环境提供了一个独特的机会,可以研究太阳风,宇宙射线和磁层与表面,直接地下以及未磁性行星体的表面外观的相互作用。
Derrick Kwadwo Danso,BaptisteFrançois,Benoit Hingray,Arona Diedhiou。使用动态编程和敏感性分析评估水力发电的灵活性,以在西非整合太阳能和风能。与加纳Akosombo水库的插图。清洁工生产杂志,2021,287,pp.125559。10.1016/j.jclepro.2020.125559。hal-03370754
我们评估了纽约七个公用事业中每一个的电网灵活性潜力:纽约的Edison Company,Inc。(Con Edison),Niagara Mohawk Power Company D/B/A National Grid(National Grid),长岛电力管理局(Long Island Power),Lipa(LIPA)(LIPA)(LIPA)(目前由PSEG Long Islant Corporiation,PSEGLI和GASESTER COLICATION,ROCH ELECTER CORIACTION和ROCH ELECTER CORIPUTION(NY YOCE COLICATION,NY andse,NY) (RG&E),中央哈德逊汽油和电气公司(中央哈德逊)和橙色和罗克兰公用事业公司(O&R)我们为住宅和商业客户建立了一系列网格灵活性计划,包括供暖,通风和冷却(HVAC),供水,时变速率,电动汽车,电动汽车(BTM)存储以及大型商业和工业(C&I)需求响应。我们研究的重点是可调度的网格灵活性选项,在客户的计表后面,并基于全面部署或严格的试验,为定量建模提供了足够的经验支持。可能能够提供灵活性的其他新兴技术将在随后的报告(本系列的第三卷)中进行讨论。
在供应方面,发电成本将会增加,以实现完全脱碳的电力供应(有关进一步讨论,请参阅本报告第 4 节)。将开发千兆瓦的新可再生能源发电,能源储存资源将在平衡供需方面发挥越来越重要的作用。可能需要提供清洁、稳定发电的新技术(例如氢燃烧涡轮机或氢燃料电池),以确保 2040 年 100% 清洁电力系统的可靠性。输电和配电系统将需要扩展以适应新的负荷增长并将新发电连接到电网。
本文确定了构成核技术灵活性和运行的底层物理机制,重点分析了核电机组的两个结构特征(即核电计划优化和最小功率变化)对简化法国电力系统模拟的影响。我们开发了一种模拟核电计划优化的方法,以反映电厂管理人员如何在高峰需求期间最大限度地提高电厂可用性。利用这种计划优化,我们计算每个电厂的最小功率水平及其随时间的变化,以评估灵活性潜力。考虑了三种核灵活性假设:一种假设机组计划被认为是恒定的,这是能源系统建模文献中的标准做法;一种假设机组计划优化且最小功率恒定;一种假设机组计划优化且物理引起的最小功率变化。敏感性分析强调了机组计划优化、最小功率变化、核电和可再生能源在容量结构中的相对份额以及模拟模型结果之间的联系。我们发现,随着核电在容量结构中的相对份额增加,核电机组的优化和相关的实际最小功率变化变得越来越重要。随着可再生能源的装机容量随着剩余需求水平的下降而增加,计划的重要性保持不变。本文重点介绍了对核电调度优化和由此产生的最小功率变化进行建模的潜在好处。这两个方面对于评估使用大量可再生能源的简化低碳电力系统中的核电灵活性特征至关重要。
5 资料来源:历史装机容量 – 弗劳恩霍夫研究所,装机功率 | Energy-Charts;预计到 2035 年的装机容量 – BMWK,东部计划概览 | BMWK;预计 2035 年后装机容量 – BMWK 和 Netzentwicklungsplan Strom,NDP 2037/2045 情景框架 | Netzentwicklungsplan Strom
Element 16 Technologies, Inc.(Element 16)成功开发并展示了一种新型长时储能技术,该技术使用单罐配置的硫磺来经济高效地储存和调度可再生能源电力。核心创新是利用石油和天然气工业中丰富的废副产品硫磺,大幅降低 Element 16 热能储存的成本。该团队建造并测试了一个中试规模的 1.5 兆瓦时硫磺热电池装置,该装置集成了一个电加热器,旨在利用可再生能源发电产生的可变多余电力进行充电。储存的热量通过小型低温发电装置转化为电能,该装置也可直接用于工业过程热脱碳。