GSATCOM 小型地球同步轨道卫星是一种电信平台,能够承载各种商业有效载荷和任务,包括电视广播、多媒体应用、数据通信以及各种频段的移动或固定服务。小型地球同步轨道卫星的全新模块化灵活设计增强了全球运营商在商业市场上的竞争力。
免责声明:本文件是作为美国政府资助工作的记录而编写的。尽管我们认为本文件包含正确的信息,但美国政府及其任何机构、加利福尼亚大学董事会及其任何员工均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任,也不表示其使用不会侵犯私有权利。本文中以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构或加利福尼亚大学董事会对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构或加利福尼亚大学董事会的观点和意见。
锂离子(锂离子)电池已经以各种方式制造出来,以证明灵活性。可以通过有效材料,分离器,电极和电解质来增强灵活性,然后可以将其集成以形成具有有希望的电化学性能的柔性电子设备,而不是传统的非弹性锂离子电池。在本综述中研究了柔性液化电池制造,材料及其电化学性能的最新进展。此外,还探索了利用灵活电池及其未来应用的电子设备的最新发展。便携式和可穿戴电子设备,作为柔性,可充电和高性能的锂离子电池的主要受益者。最终,考虑实施实施的医疗保健和各种储能系统中灵活电池的各种应用和挑战。
灵活的座位对课堂环境的影响Kassadie Cole教学与学习学院,伊利诺伊州立大学,美国,伊利诺伊州,美国伊利诺伊州伊利诺伊州,伊利诺伊州教学与学习学院,伊利诺伊州州立大学,伊利诺伊州北部,美国伊利诺伊州穆罕默德·巴特纳(Illinois大学,美国伊利诺伊州师范大学,电子邮件:atalba@ilstu.edu摘要,因为学校努力灌输大学和学生的职业准备,学生的学术成就仍然是教育工作者和管理人员的优先事项。在整个研究中,都检查了学生使用的课堂学习环境。具体来说,这项研究研究了学生如何利用课堂中的空间以及课堂空间如何影响学生与老师之间的互动。这项定性研究采用了课堂地图和记录日志来收集二年级和五年级教室的学生的数据。通过收集的数据,检查了课堂环境与学生参与之间的关系。从研究中,出现了许多常见趋势。常见的主题包括学生在课堂上选择特定的座位选择,选择灵活的座位选择比传统的座位选择更多,并且一些学生需要指导教师指导座位选择所需的修改或提醒如何坐在特定选择中。通过这些发现,它在课堂上促进了更加协作的工作环境。关键字:灵活的座位;课堂学习环境;传统座位,基础教育;学习风格。简介物理教室的设计继续改变并远离传统的教室设置,桌子面向房间的前部。教室中的传统学习空间由桌子组成,面向教室的前部,其前部的老师或讲台(Sawers,Wicks,Mvududu,Seeley,Seeley和Copeland,2016年,2016年,第27页)。教室正在教室中过渡到灵活的座位设计,这为学生提供了更多的学生选择和选择。使用灵活的座位的想法是模仿咖啡店或“星巴克”的想法,让学生在房间周围工作(Havig,2017年,第1页)。课堂环境会影响学生参与度和学术成就的水平。教育领域的利益相关者正在寻找继续朝这个方向发展的方法(Dotterer&Lowe,2011年,第1652页)。课堂上的学生需要在他们正在学习的地方感到舒适,这将使学生更加敬业。学生将更加专心,并且更有可能参与创造更有意义,有影响力的学习经验的讨论(Reyes,Brackett,Rivers,White,White和Salovey,2012年,2012年,第700页)。资金最近一直是一个很大的关注点,决策者开始根据基于绩效的模型分配资金。这种转变使研究人员投入更多的时间和精力来“检查特征理想教育经验的因素”(Granito&Santana,2016年,第1页)。使用基于绩效的模型时,学生的成就是最终的重点。为了使学生取得成功并取得了最大的能力,必须检查和分析影响学生成就的因素。一个促成因素是学生的参与度,这是“时间和能量学生在学习上的消费量。这与认知技能,大学的调整和个人成长有关,所有这些都促进了学生的成功”(Granito&Santana,2016年,第1页)。学生在课堂上经历的参与水平会影响他们的成功。由于学生的参与与学生的态度和看法有关,因此他们在其中学习的课堂环境是为了满足他们的学习需求。环境条件,例如“温度,墙壁的颜色,照明,空气质量和声学也会影响学生学习(Granito&Santana,2016年,第2页)。仔细研究课堂环境,可以使教育利益相关者确定构建和创建合理学习空间以促进学生成就的方式。
就像美国各地的地区一样,弗吉尼亚州劳登县的劳登县公立学校不得不快速过渡到远程学习,以响应Covid-19-19。该地区以前曾致力于在物理课堂上实施学习机会的方法 - 使用可调节的座位和空间,以鼓励更多的合作,灵活的学生组和基于项目的动手学习的机会。尽管这种灵活的方法并没有使向远程学习的过渡变得容易,但在Covid-19-19大流行之前的几年中,心态逐渐转变为灵活的教学有助于支持向远程学习的过渡。该地区指出,这些举措在大流行之前已经进行了,但是“病毒是一种加速器”,增强了对合作,建立关系,可访问技术以及与学生和家庭的互动的关键需求。
定向能量沉积(DED)过程已用于增强机械性能,维修和部分制造。由于DED打印零件的质量较低,因此需要后加工。即使零件在相似的条件下打印,尺寸变化也经常由于小打印错误的积累而发生。由于工具过度喂养和由于这种变化而导致的非切割区域的出现,无法保证成品零件的质量。因此,考虑实际印刷零件形状,应进行后进程加工。在此,提出了灵活的后进程加工,是通过使用DED印刷零件的机器测量(OMM)来利用形状信息来提出的。通过印刷部分的几何维度的距离计算加工设计形状的过程余量。进给率(覆盖)和每个打印零件的加工路径都会根据过程余量灵活确定。此技术应用于用STS 316L材料印刷的口袋形部分,并建立了粗糙和完成的加工条件。通过灵活调整进料率来减少粗糙的加工时间。分别在30和0.25μm下达到了准确性和表面粗糙度的最终形式。
摘要 —本文提出了一种称为“模拟到现实到模拟”(Sim2Real2Sim)的新策略,以弥合模拟与现实世界之间的差距,并自动执行柔性物体操纵任务。该策略包括三个步骤:(1)使用粗糙环境和估计模型来开发在模拟中完成操纵任务的方法;(2)将模拟中的方法应用于现实世界并比较其性能;(3)根据现实世界和模拟之间的差异更新模拟中的模型和方法。选择了 2015 年 DARPA 机器人挑战赛决赛中的 Plug Task 来评估我们的 Sim2Real2Sim 策略。从现实世界到模拟,推导出一种用于构建线性柔性物体模型的新识别方法。模拟和现实世界中 DRC plug 任务的自动化证明了 Sim2Real2Sim 策略的成功。实施数值实验以验证模拟模型。
免责声明:洛斯阿拉莫斯国家实验室是一家采取平权行动/提供平等机会的雇主,由 Triad National Security, LLC 为美国能源部国家核安全局运营,合同编号为 89233218CNA000001。通过批准本文,出版商承认美国政府保留非独占、免版税的许可,可以出于美国政府目的出版或复制本文的已发表形式,或允许他人这样做。洛斯阿拉莫斯国家实验室要求出版商将本文注明为在美国能源部的支持下完成的工作。洛斯阿拉莫斯国家实验室坚决支持学术自由和研究人员的发表权利;但是,作为一个机构,实验室并不认可出版物的观点,也不保证其技术上的正确性。
在科学应用中,物理学家和工程师都利用了刚性和柔性波导。许多测试实验室从事需要微波能量的研究。同步源,光源,粒子加速器和线性加速器(Linac)各自进行设施范围且特定于系统的升级。这些升级使科学家能够跟上高能物理学和核融合研究的苛刻性质。在系统升级和设施扩展期间,在具有空间限制和特定机械要求的区域中采用了被动微波组件。常见的是,在长长的波导中,两种类型的矩形波导 - 刚性和挠性。在符合严格要求的情况下,实验室在其波导运行中使用了较短的弹性指导。这些部分缓解了RF系统的其他机械运动的振动和支持。这些运行在整个实验室中延长,从微波源(Klystron或固态放大器)到腔。