安志强,德克萨斯大学休斯顿健康科学中心 MICHELE A. BASSO,华盛顿大学华盛顿国家灵长类动物研究中心 RUDOLF P. BOHM,杜兰大学国家灵长类动物研究中心 KATHLEEN CONLEE,美国人道协会 HENRY T. GREELY,斯坦福大学 DIANE E. GRIFFIN,约翰霍普金斯大学 THOMAS HARTUNG,约翰霍普金斯大学动物实验替代中心 JEFFREY H. KORDOWER,亚利桑那州立大学 DOUGLAS LAUFFENBURGER,麻省理工学院 VIRGINIA M. LESSER,俄勒冈州立大学 PATRICIA E. MOLINA,路易斯安那州立大学新奥尔良健康科学中心 RICHARD NAKAMURA,美国国立卫生研究院(已退休) KYLE E. ORWIG,匹兹堡大学 SERGIU PASCA,斯坦福大学 MICHAEL LOUIS SHULER,康奈尔大学
非人类灵长类动物是研究复杂人类疾病、了解生物功能和解决人类新诊断和治疗方法安全性的极其重要的动物模型。与人类相比,它们具有遗传、生理、免疫和发育相似性,因此为人类健康和疾病提供了重要的临床前模型。本综述重点介绍了一些研究领域,这些领域证明了非人类灵长类动物在转化研究中的重要性。这些领域包括妊娠和发育障碍、传染病、基因治疗、体细胞基因组编辑和体内成像应用。免疫系统的力量以及我们对它在急性和慢性疾病中的作用的日益了解正被用于为一系列医疗条件提供新的治疗方法。鉴于人类免疫系统在健康和疾病中的重要性,详细研究非人类灵长类动物的免疫系统对于推进临床前转化研究至关重要。对非人类灵长类动物的需求仍然是高度优先的,这在严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 全球大流行期间尤为明显。非人类灵长类动物将继续解决关键问题并提供预测模型,以确定人类整个生命周期内使用的新型诊断和治疗方法的安全性和有效性。
摘要 最近的人体成像研究表明,次级体感皮层 (SII) 参与了需要高级信息整合的过程,例如自我意识、社会关系、全身表征和隐喻推断。这些功能远远超出了其在形成身体地图(即使是最复杂的形式)中已知的作用,需要整合除体感信息之外的不同信息模式。然而,在动物实验中似乎没有在神经元水平上检测到这种复杂处理的证据,这将构成人类和非人类动物之间的重大差异。本文仔细研究了这一空白,介绍了人类和非人类灵长类动物 SII 功能的实验证据,并结合了它们的进化意义和机制,在功能上将人类 SII 定位为灵长类动物的大脑。根据提供的数据,提出了一种新的以身体为中心的整体自我概念,该概念表示为灵长类 SII 中更全面的身体在世界中的地图,其中考虑到了人类 SII 的进化特征及其对自我意识出现的影响。最后,从认知科学的角度引入了投射的概念,为弥合观察到的行为与神经生理数据之间的差距提供了合乎逻辑的解释。
神经代码的变化使每个个体都独一无二。我们使用来自猕猴视网膜中主要神经节细胞类型的 100 个群体记录,结合可解释的个体变异计算表示,探测了神经代码的变化。这种表示捕捉了非线性、时间动态和空间感受野大小等属性的变化和共变,并保留了开细胞和关细胞之间不对称等不变性。不同细胞类型中响应属性的共变与其突触输入的层压接近度有关。令人惊讶的是,男性视网膜比女性视网膜表现出更高的放电率和更快的时间整合。利用以前记录的视网膜数据可以有效地表征新的猕猴视网膜和人类视网膜。模拟表明,将大量视网膜记录与行为反馈相结合可以揭示活体人类的神经代码,从而改善视网膜植入物的视力恢复。
简单的摘要:动物园的访客对动物的影响有所不同;主要归类为正,负或中性。本文根据文献中发现的105篇论文量化了访客在非青少年物种中的影响。总共研究了252种非青睐物种。自2012年以来,发布的论文数量有所增加,现在评估了一系列动物群体(包括禽,爬行动物,两栖动物,鱼,哺乳动物和无脊椎动物)。两栖动物对游客的反应频率比预期的要多,中性反应比预期的要高的反应频率要高,而在中立和“未知”的反应频率比预期的要频繁。许多基于动物的指标已被用来评估游客对动物的影响,而在整个分类单元中使用的措施各不相同。建议前进的研究人员纳入一套措施,尤其是那些在代表单个动物经验和动物福利方面有意义的措施,以应准确捕获这些指标的方式收集。
随着最近发布的高质量参考基因组组装,普通狨猴(Callithrix jacchus)已成为生物医学研究中一种有价值的非人灵长类动物模型。两个亚洲灵长类动物研究中心均独立报道了患有癫痫的狨猴。尽管如此,这些灵长类动物中心的群体遗传学和与狨猴癫痫相关的特定遗传变异尚未阐明。在这里,我们利用全基因组测序技术,对来自两个癫痫狨猴谱系的 41 个样本的遗传关系和癫痫风险变异进行了表征。我们从 41 个样本中鉴定了 14 558 184 个单核苷酸多态性(SNP),发现血液样本中的嵌合水平高于指甲样本。基因分析显示,灵长类动物中心的狨猴之间存在四度亲缘关系。此外,SNP 和拷贝数变异 (CNV) 分析表明,含 WW 结构域的氧化还原酶 ( WWOX ) 和酪氨酸蛋白磷酸酶非受体 21 型 ( PTPN21 ) 基因可能与狨猴癫痫有关。值得注意的是,
摘要 直接刺激灵长类动物 V1 能否替代视觉刺激并模仿其感知效果?为了解决这个问题,我们开发了一种光学遗传工具包,使用宽视野钙成像“读取”神经群体反应,同时使用光遗传学将神经反应“写入”行为猕猴的 V1。我们专注于视觉掩蔽现象,其中共定位的中等亮度掩蔽显著降低了对暗淡目标的检测(Cornsweet 和 Pinsker,1965 年;Whittle 和 Swanston,1974 年)。使用我们的工具包,我们测试了 V1 光遗传刺激是否可以重现视觉掩蔽的感知掩蔽效应。我们发现,与视觉掩蔽类似,低功率光刺激可以显著降低视觉检测灵敏度,视觉和光遗传学引起的 V1 反应之间的亚线性相互作用可以解释这种感知效应,并且这些神经和行为效应具有空间选择性。我们的工具包和结果为进一步探索通过直接刺激感觉皮层来实现感知替代打开了大门。
沉浸式虚拟现实 (VR) 环境是探索认知过程(从记忆和导航到视觉处理和决策)的强大工具,并且可在自然但受控的环境中进行。因此,它们已被用于不同物种和各种研究小组。不幸的是,在这样的环境中设计和执行行为任务通常很复杂。为了应对这一挑战,我们创建了 DomeVR,这是一个使用虚幻引擎 4 (UE4) 构建的沉浸式 VR 环境。UE4 是一个功能强大的游戏引擎,支持照片级逼真的图形,并包含专为非程序员设计的可视化脚本语言。因此,可以使用拖放元素轻松创建虚拟环境。DomeVR 旨在使这些功能可用于神经科学实验。这包括一个日志记录和同步系统,用于解决 UE4 固有的时间不确定性;一个交互式 GUI,供科学家在实验期间观察受试者并动态调整任务参数,以及一个圆顶投影系统,用于在非人类受试者中实现完全任务沉浸。这些关键功能是模块化的,可以轻松单独添加到其他 UE4 项目中。最后,我们提供了原理验证数据,重点介绍了 DomeVR 在三个不同物种(人类、猕猴和老鼠)中的功能。
关于动物认知进化的主要假设强调了特定在影响社会生态环境塑造认知的作用。然而,空间通常是由同一生态行会的多个物种同时占据的。这些同胞物种可以争夺食物,从而刺激或阻碍认知。将大脑大小视为认知的代理,我们测试了物种象征是否影响了肉类灵长类动物的认知进化。我们首先回顾了淡韧带灵长类动物谱系之间同学的进化历史。然后,我们考虑了或不考虑物种的同胞,拟合了节俭喷泉灵长类动物的几个大脑区域大小的进化的系统发育模型。我们发现,最好使用不考虑辅助作用的模型来使用直接信息处理中使用的整个大脑或大脑区域的演变。相比之下,考虑物种sympa-尝试最佳的模型可以预测与与社会生态环境相互作用的长期记忆相关的大脑区域的演变,其大小的减少越高。我们推测,通过产生强烈的食物耗竭,可能导致资源时空时空的过度复杂性,以抵消高认知能力的利益,并且/或可能会驱动利基分配和特殊性,从而诱导下脑区域尺寸。此外,我们报告说,在伴奏中,灵长类动物的多样化较慢。这项比较研究表明,物种同胞显着促进了灵长类动物的进化。