从神经活动中解码感觉刺激可以提供有关神经系统如何解释物理环境的洞察力,并促进了脑机界面的发展。然而,神经解码问题仍然是一个重大的公开挑战。在这里,我们提出了一种有效的非线性解码方法,用于从视网膜神经节细胞(RGC)的尖峰活动中推断自然现场刺激。我们的方法使用神经网络来改善准确性和可扩展性的现有解码器。对来自1000多个猕猴RGC单元的真实视网膜尖峰数据进行了训练和验证,解码器证明了非线性计算的必要性,以准确地解码视觉刺激的精细结构。具体来说,自然图像的高通空间特征只能使用
从神经活动中解码感觉刺激可以提供有关神经系统如何解释物理环境的洞察力,并促进了脑机界面的发展。然而,神经解码问题仍然是一个重大的公开挑战。在这里,我们提出了一种有效的非线性解码方法,用于从视网膜神经节细胞(RGC)的尖峰活动中推断自然现场刺激。我们的方法使用神经网络来改善准确性和可扩展性的现有解码器。对> 1000个猕猴RGC单元的实际视网膜尖峰数据进行了训练和验证,解码器证明了非线性计算的必要性,以准确地解码视觉刺激的精细结构。具体来说,自然图像的高通空间特征只能使用非线性技术解码,而低通功能可以通过线性和非线性方法很好地提取。一起,这些结果在解码大量神经元种群的自然刺激方面推进了最新的状态。
在特定区域选择性释放药物将使许多科学和医学领域受益。通过聚焦超声(远程应用的深度穿透能量)激活的纳米颗粒药物载体可提供此类选择性干预。在这里,我们开发了稳定的、超声响应的纳米颗粒,可用于在非人类灵长类动物中有效和安全地释放药物。纳米颗粒用于在深层大脑视觉区域释放丙泊酚。释放可逆地调节受试者的视觉选择行为,并且特定于目标区域和释放的药物。钆增强 MRI 成像显示血脑屏障完好无损。血液抽取显示正常的临床化学和血液学。总之,这项研究提供了一种安全有效的方法,可以在选定的深层大脑区域按需释放药物,其剂量足以调节行为。
灵长类动物已经进化出各种认知能力来应对复杂的社会世界。为了了解大脑如何实现关键的社会认知能力,我们描述了面部处理、社交互动理解和心理状态归因领域的功能专业化。面部处理系统从单个细胞到大脑区域内的神经元群体,再到提取和表示抽象社交信息的分层组织网络,都是专门的。这种功能专业化并不局限于感觉运动外围,而是似乎是灵长类动物大脑组织一直到皮质层级顶端区域的普遍主题。处理社交信息的回路与处理非社交信息的并行系统并列,表明在不同领域应用了共同的计算。社会认知的神经基础的新图景是一组不同但相互作用的子网络,它们涉及面部感知和社会推理等组成过程,遍及灵长类动物大脑的大部分。
1。美国纽约州哥伦比亚大学医学中心神经科学系。 2。 Zuckerman Institute,哥伦比亚大学,纽约,纽约,美国3。 Grossman心理统计中心,哥伦比亚大学,纽约,纽约,美国。 4。 加利福尼亚大学伯克利分子和细胞生物学系5。 麦戈文大脑研究所,马萨诸塞州剑桥,马萨诸塞州剑桥6。 马萨诸塞州剑桥大学,马萨诸塞州脑和认知科学系,马萨诸塞州7。 加利福尼亚州帕洛阿尔托市斯坦福大学神经生物学系8。 霍华德·休斯医学院,斯坦福大学,帕洛阿尔托,加利福尼亚州9。 加利福尼亚州帕洛阿尔托市斯坦福大学电气工程系10。 Wu Tsai神经科学研究所,斯坦福大学,帕洛阿尔托,加利福尼亚州11。 Bio-X研究所,斯坦福大学,帕洛阿尔托,加利福尼亚州12。 Janelia Research Campus,霍华德·休斯医学院,美国弗吉尼亚州阿什伯恩市13。 计算与神经系统,加利福尼亚理工学院,帕萨迪纳,加利福尼亚州14。 IMEC,鲁汶,比利时15。 卡夫利脑科学研究所,哥伦比亚大学,纽约,纽约16。 加利福尼亚州帕洛阿尔托市斯坦福大学神经生物学系17。 霍华德·休斯医学院,哥伦比亚大学,纽约,纽约18。 神经科学研究生课程,斯坦福大学,帕洛阿尔托,加利福尼亚州19。 加利福尼亚州帕洛阿尔托市斯坦福大学电气工程系20。 WU TSAI神经科学研究所,斯坦福大学,帕洛阿尔托,加利福尼亚州21。美国纽约州哥伦比亚大学医学中心神经科学系。2。Zuckerman Institute,哥伦比亚大学,纽约,纽约,美国3。 Grossman心理统计中心,哥伦比亚大学,纽约,纽约,美国。 4。 加利福尼亚大学伯克利分子和细胞生物学系5。 麦戈文大脑研究所,马萨诸塞州剑桥,马萨诸塞州剑桥6。 马萨诸塞州剑桥大学,马萨诸塞州脑和认知科学系,马萨诸塞州7。 加利福尼亚州帕洛阿尔托市斯坦福大学神经生物学系8。 霍华德·休斯医学院,斯坦福大学,帕洛阿尔托,加利福尼亚州9。 加利福尼亚州帕洛阿尔托市斯坦福大学电气工程系10。 Wu Tsai神经科学研究所,斯坦福大学,帕洛阿尔托,加利福尼亚州11。 Bio-X研究所,斯坦福大学,帕洛阿尔托,加利福尼亚州12。 Janelia Research Campus,霍华德·休斯医学院,美国弗吉尼亚州阿什伯恩市13。 计算与神经系统,加利福尼亚理工学院,帕萨迪纳,加利福尼亚州14。 IMEC,鲁汶,比利时15。 卡夫利脑科学研究所,哥伦比亚大学,纽约,纽约16。 加利福尼亚州帕洛阿尔托市斯坦福大学神经生物学系17。 霍华德·休斯医学院,哥伦比亚大学,纽约,纽约18。 神经科学研究生课程,斯坦福大学,帕洛阿尔托,加利福尼亚州19。 加利福尼亚州帕洛阿尔托市斯坦福大学电气工程系20。 WU TSAI神经科学研究所,斯坦福大学,帕洛阿尔托,加利福尼亚州21。Zuckerman Institute,哥伦比亚大学,纽约,纽约,美国3。Grossman心理统计中心,哥伦比亚大学,纽约,纽约,美国。4。加利福尼亚大学伯克利分子和细胞生物学系5。麦戈文大脑研究所,马萨诸塞州剑桥,马萨诸塞州剑桥6。马萨诸塞州剑桥大学,马萨诸塞州脑和认知科学系,马萨诸塞州7。加利福尼亚州帕洛阿尔托市斯坦福大学神经生物学系8。霍华德·休斯医学院,斯坦福大学,帕洛阿尔托,加利福尼亚州9。加利福尼亚州帕洛阿尔托市斯坦福大学电气工程系10。Wu Tsai神经科学研究所,斯坦福大学,帕洛阿尔托,加利福尼亚州11。 Bio-X研究所,斯坦福大学,帕洛阿尔托,加利福尼亚州12。 Janelia Research Campus,霍华德·休斯医学院,美国弗吉尼亚州阿什伯恩市13。 计算与神经系统,加利福尼亚理工学院,帕萨迪纳,加利福尼亚州14。 IMEC,鲁汶,比利时15。 卡夫利脑科学研究所,哥伦比亚大学,纽约,纽约16。 加利福尼亚州帕洛阿尔托市斯坦福大学神经生物学系17。 霍华德·休斯医学院,哥伦比亚大学,纽约,纽约18。 神经科学研究生课程,斯坦福大学,帕洛阿尔托,加利福尼亚州19。 加利福尼亚州帕洛阿尔托市斯坦福大学电气工程系20。 WU TSAI神经科学研究所,斯坦福大学,帕洛阿尔托,加利福尼亚州21。Wu Tsai神经科学研究所,斯坦福大学,帕洛阿尔托,加利福尼亚州11。Bio-X研究所,斯坦福大学,帕洛阿尔托,加利福尼亚州12。Janelia Research Campus,霍华德·休斯医学院,美国弗吉尼亚州阿什伯恩市13。计算与神经系统,加利福尼亚理工学院,帕萨迪纳,加利福尼亚州14。IMEC,鲁汶,比利时15。卡夫利脑科学研究所,哥伦比亚大学,纽约,纽约16。加利福尼亚州帕洛阿尔托市斯坦福大学神经生物学系17。霍华德·休斯医学院,哥伦比亚大学,纽约,纽约18。神经科学研究生课程,斯坦福大学,帕洛阿尔托,加利福尼亚州19。加利福尼亚州帕洛阿尔托市斯坦福大学电气工程系20。WU TSAI神经科学研究所,斯坦福大学,帕洛阿尔托,加利福尼亚州21。WU TSAI神经科学研究所,斯坦福大学,帕洛阿尔托,加利福尼亚州21。加利福尼亚州帕洛阿尔托市斯坦福大学生物工程系22。加利福尼亚州帕洛阿尔托市斯坦福大学医学院神经外科系23。霍华德·休斯医学院,伯克利,加利福尼亚州24。马里兰州巴尔的摩约翰·霍普金斯大学生物医学工程系
摘要 皮层内微刺激 (ICMS) 常用于许多实验和临床范例;然而,它对神经元激活的影响仍未完全了解。为了记录清醒非人类灵长类动物皮层神经元对刺激的反应,我们在通过植入三只恒河猴初级运动皮层 (M1) 的犹他阵列提供单脉冲刺激的同时记录了单个单位活动。输送到单通道的 5 到 50 m A 之间的刺激可靠地引发了整个阵列中记录的神经元尖峰,延迟长达 12 毫秒。ICMS 脉冲还会引发一段长达 150 毫秒的抑制期,通常在初始兴奋反应之后发生。电流幅度越高,引发尖峰的概率就越大,抑制持续时间也越长。在神经元中引发尖峰的可能性取决于自发放电率以及其最近尖峰时间和刺激开始之间的延迟。 2 到 20 Hz 之间的强直重复刺激通常会调节诱发尖峰的概率和抑制的持续时间;高频刺激更有可能改变这两种反应。在逐次试验的基础上,刺激是否诱发尖峰并不影响随后的抑制反应;然而,它们随时间的变化通常是正相关或负相关的。我们的研究结果证明了皮质神经对电刺激反应的复杂动态,在将 ICMS 用于科学和临床应用时需要考虑这些动态。
生物治疗蛋白的出生后发育风险 • 使用证据权重来评估和传达风险 • 美国 BLA 产品标签第 8.1 节中用于传达风险的信息来源
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2021年6月25日发布。 https://doi.org/10.1101/2021.06.24.449775 doi:biorxiv preprint
猕猴的优质顶叶占据了海报中的partoftheparietallobeandplaysacracialrolein,这是信息源的整合(来自视觉,运动,运动和体感大脑区域),以实现高级COG固态功能的目的。该区域涵盖了室内沟和顶枕沟,其中包括Alsotheprecuneatecortecortecortecortexinthemesialsialsialsialsialsialfaceferefthehemisphere。它载有固定性的遗传性:PE,PEIP,PECI前后和PEC,MIP,PGM和V6A。最近研究的基于功能的mrihavesesgestdputativehumanhomologue of theareasoftheareasofthemacaquesuerparietallobule。在这里我们回顾了解剖学细分,猕猴上顶叶的皮质和丘脑皮质连接,与生理和病变状况的组织和组织中的人体学和组织相关联。猕猴大脑这一部分的知识可以帮助理解病理状况,这些病理状况使人类的正常行为行为融合了手臂的正常行为,并且可以激发大脑计算机界面进行与周围环境相互作用所需的ininmoreAccurateWaysworewaysorimotorimotortortransortation。
1 Azuma等。“人类肝细胞在fah - / - /rag2 - / - /il2rg - / - 小鼠中的稳健膨胀。”自然生物技术(2007)。2冯·施文(Von Schaewen)等。“通过病毒适应扩大丙型肝炎病毒的宿主范围。”MBIO(2016。 3 Valenti等。 “ I148M多态性的纯合性影响非酒精性脂肪肝病患者的肝纤维化。” Hepatology(2010)。 4 Srinivasan等。 “肝磷酸合成酶1-缺乏的肝脏小鼠模型。” 遗传代谢疾病杂志(2019年)。 5 Hu,Huili等。 “功能小鼠和人肝细胞作为3D器官的长期扩张。” Cell(2018)。MBIO(2016。3 Valenti等。 “ I148M多态性的纯合性影响非酒精性脂肪肝病患者的肝纤维化。” Hepatology(2010)。 4 Srinivasan等。 “肝磷酸合成酶1-缺乏的肝脏小鼠模型。” 遗传代谢疾病杂志(2019年)。 5 Hu,Huili等。 “功能小鼠和人肝细胞作为3D器官的长期扩张。” Cell(2018)。3 Valenti等。“ I148M多态性的纯合性影响非酒精性脂肪肝病患者的肝纤维化。”Hepatology(2010)。 4 Srinivasan等。 “肝磷酸合成酶1-缺乏的肝脏小鼠模型。” 遗传代谢疾病杂志(2019年)。 5 Hu,Huili等。 “功能小鼠和人肝细胞作为3D器官的长期扩张。” Cell(2018)。Hepatology(2010)。4 Srinivasan等。“肝磷酸合成酶1-缺乏的肝脏小鼠模型。”遗传代谢疾病杂志(2019年)。5 Hu,Huili等。 “功能小鼠和人肝细胞作为3D器官的长期扩张。” Cell(2018)。5 Hu,Huili等。“功能小鼠和人肝细胞作为3D器官的长期扩张。”Cell(2018)。Cell(2018)。